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Chapter 1

Manifold

One of the most fundamental mathematical object in this course. All our space-
times studied in this course are manifold.
• Open ball in Rn (Rn is a topological space)
An open ball with radius r centered around a point y = (y1, . . . , yn) in Rn is{

x ∈ Rn
|x− y| = ( n∑

µ=1

(xµ − yµ)2
) 1

2

< r
}

• Open set in Rn: set of points expressable as union of open balls.

1.1 manifold

Definition 1.1.1 (Mainfold). A set made up of pieces “look like” open subsets
of Rn such that these pieces can be “sewn/glued together” smoothly.

Definition 1.1.2 (Precise Version). An n-dimensional, C∞, real manifold M
is a set together with a collection of subsets {Oα} satisfying:
(1)Each p ∈M must lie in at least one {Oα}. {Oα} cover M.
(2)For each α, there is one-to-one, onto, map:

ψα : Oα → Uα (1.1)

where Uα is an open subset of Rn.
(3)For two sets Oα

⋂
Oβ 6= ∅, the map ψβ ◦ ψ−1

α is C∞.

1



2 CHAPTER 1. MANIFOLD

Now let us look at this definition more closely.
What kind of set?
• M is a set: a collection of objects.
• Together there should exist Oα. Each Oα ⊆M.
• Oα covers M: Any object in M must be in one or more Oα.
What kind of subset?
• One-to-one and onto mappable to open subset of Rn(“one-to-one” & “one-to-
one correspondance” are different).
• one-to-one + onto = one-to-one correspondance;
• one-to-one: Let f : A→ B be a function. f is said to be one-to-one if

∀x1, x2 ∈ A, x1 6= x2 ⇒ f(x1) 6= f(x2)

• onto: ∀y ∈ B, ∃x ∈ A, s.t, f(x) = y.
• Composite of ψβ ◦ ψ−1

α is smooth (infinity differentiable).

1.2 Example of manifolds

(1)

Rn, {O} (1.2)

O = Rn, ψ = identity map (1.3)
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(2) any open subset of Rn.
(3) 2-sphere: S2

S2 =
{

(x1, x2, x3) ∈ R
(x1)2 + (x2)2 + (x3)2 = 1

}
(1.4)

One function ψ can not map S2 to R2. And this is also the reason we need a
collection of ψα.
(4) In this course, we view the spacetime as a 4-d manifold. There are theories
with extra-dimensions, such as string theory. They view the spacetime as a 10-
or 11- dimensional manifold.

this course ⇒ spacetime is 4-d manifold.
Now the definition of manifold is clear. Let us also name other quantities we
encountered in this definition.
• The mapping ψα are called “chart” or “coordinate system”.
• The collection of all (Oα, ψα) is called “atlas”.

1.3 Product of manifold

Given two manifold M,M′ with dimensions d, d′, form a new manifold.
For

p ∈ Oα ⊆M, p′ ∈ Oβ ⊆M
ψα : Oα → Uα, ψ

′
β : O′β → U ′β

then the new manifold is M×M′, s.t.,

(p, p′) ∈ Oα ×O′β ⊆M×M′

ψαβ : Oα ×O′β → Uα × U ′β
ψαβ(p, p′) = [ψα(p), ψ′β(p)]

This ψαβ and {Oαβ} satisfies the definition of a manifold. Then M×M′ is a
new manifold. It is called the ”product manifold”
• Most manifold in this course are Rn × Sm, n+m = 4.
• Many manifold in string theory are “product manifold” too.
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Chapter 2

Vectors

2.1 Tangent vectors and tangent space

• Intuitively, when manifold is embedded in Rn.
• When embedding is not explicit or possible.

Let F = { all C∞ functions from M→ R1}

Then a tangent vector v at point p ∈M is a map v : F → R1, s.t.

v(af + bg) = av(f) + bv(g) ∀f, g ∈ F ; a, b ∈ R (2.1)

v(fg) = f(p)v(g) + g(p)v(f) (Leibnitz rule) (2.2)

(Homework: Show that v(c) = 0 for constant function C.)
The collection of tangent vectors form a vector space, Vp.

Theorem 2.1.1. Let M be a n-dimensional manifold. Let p ∈ M and Vp de-
note the tangent vector space at p, then dimVp = n.

5



6 CHAPTER 2. VECTORS

The operators Xµ : F → R defined as

Xµ ◦ f ≡
∂

∂xµ
(f ◦ ψ−1), µ = 1, . . . , n (2.3)

span the tangent space Vp and therefore is its basis.
Here (x1, x2, . . . , xn) are the Cartesian coordinates of Rn. ψ is the chart from
M to Rn.

•
{
Xµ =

∂

∂xµ
, µ = 1, . . . , n

}
is called the “coordinate basis” (Because it has to

apply on f ◦ψ−1, which means ψ−1 has to be used and known), and ψ is called
“coordinate system”.

Proof. Let ψ : O → U ⊂ Rn be a chart, p ∈ O. Let f ∈ F , then

f ◦ ψ−1 : U → R1 is C∞ (2.4)

Then for µ = 1, . . . , n define Xµ : F → R1 by

Xµ(f) =
∂

∂xµ
(f ◦ ψ−1)


ψ(p)

(2.5)

We see Xµ (µ = 1, . . . , n) are tangent vectors from definition Eq(2.1) and
Eq(2.2), and they are linearly independent.
We show that Xµ span Vp.
For any C∞ function, F : Rn → R, we can construct Hµ(x), s.t.

F (x) = F (a) +

n∑
µ=1

(xµ − aµ)Hµ(x) x = (x1, x2, . . . , xn), a = (a1, a2, . . . , an)

(2.6)
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Then we have

Hµ(a) =
∂F

∂xµ


x=a

(2.7)

Now letting F = f ◦ ψ−1, a = ψ(p), then for all q ∈ O, putting F on ψ(q) ≡ x
yields

f(q) = f(p) +

n∑
µ=1

[xµ ◦ ψ(q)− xµ ◦ ψ(p)]Hµ

(
ψ(q)

)
(2.8)

here xµ ◦ ψ(·) is the coordinate projection operator.
Let v ∈ Vp, we show v is a linear combination of xn. To do this, we apply v

on f , and then evaluate on p

v[f(q)]

q=p

= v[f(p)]+

n∑
µ=1

{[
xµ◦ψ(q)−xµ◦ψ(p)

]
v(H◦ψ)+Hµ◦ψ(q)v

[
xµ◦ψ(q)−xµ◦ψ(p)

]}
q=p

Now v acting on constant produces zero, therefore,

v[f(q)] =

n∑
µ=1

[Hµ ◦ ψ(p)]v(xµ ◦ ψ) (2.9)

Now, Hµ ◦ ψ(p) = Hµ(a) =
∂F

∂xµ


x=µ

=
∂

∂xµ
(f ◦ ψ−1)


ψ(p)

= Xµ(f)

then v(f) =

n∑
µ=1

vµXµ(f), where vµ ≡ v(xµ ◦ ψ).

This can be done for any v, and therefore an arbitrary vector v can be ex-
pressed as a sum of Xµ,

v =

n∑
µ=1

vµXµ (2.10)

Comments:
1. Xµ depend on both ψ and f .
2. vµ only depend on ψ.
3. Therefore v depend on f too, but its component does not depend on f ,

they only depend on ψ.
4. Note that v is indeed a number in R1.

If we choose another coordinate system ψ′

ψ′ → X ′ν

then chain rule applies,

Xµ =

n∑
ν=1

∂x′ν

∂xµ


ψ(p)

X ′ν (2.11)
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where x′ν is the ν-th component of ψ′ ◦ ψ−1.
For a vector v, the components change according to

v′ν =

n∑
µ=1

vµ
∂x′ν

∂xµ
(vector transformation law)

(So they are the same as change of basis in linear algebra, where
∂x′ν

∂xµ
is the

matrix for coordinate change.)

2.2 Smooth curve & tangent field

A smooth curve on a manifold M is a C∞ map

C : R→M

For any point p ∈M lying on the curve C, and ∀f ∈ F , we associate a tangent
vector Tp, defined as

Tp(f) ≡ d(f ◦ C)

dt
=
∑
µ

∂

∂xµ
(f ◦ ψ−1)

dxµ

dt
=
∑
µ

dxµ

dt
Xµ(f). (2.12)

Note here f ◦C is a function from R1 to R1; f ◦ψ−1 maps from Rn to R1. This
tangent vector function apparently depend on the choice of f .

However, its components in any coordinate basis, is independent of f and
given by

T =
∑
µ

TµXµ(f); Tµ =
dxµ

dt
(2.13)

2.3 Tangent field

• Vp, Vq are different vector space.
• If no other structure is given to M, then no natural way to identity vp ∈ Vp
with vq ∈ Vq.
• However, we can define a smooth tangent field on all points on M.
(1) A tangent field, v, on a manifold M is an assignment of a tangent vector,
v|p ∈ Vp at each point p ∈M.
(2) Now for f ∈ F :M→ R, for each p ∈M, v|p(f) is a number; i.e., v(f) is a
function on M.
(3) If v(f) is a smooth function for any f , then we say the tangent field v is
smooth.
(4) v is smooth only when vµ is smooth because

v = vµXµ(f) . (2.14)

and Xµ(f) is smooth because f , ψ−1 are smooth.



Chapter 3

Tensor

3.1 Dual vector space

Definition 3.1.1 (Dual vector space). Let V be a finite-dimensional vector
space (Which could be a tangent space), let V ∗ be collection of linear maps
f : V → R1.
Define addition and scalar multiplication in this space, and then V ∗ becomes a
linear space. We name it as dual vector space to V . Any v∗ ∈ V is called a
dual vector.

If v1, . . . , vn is a basis of V , then v1∗, . . . , v2∗, s.t.,

vµ∗(vν) = δµν =

{
1 µ = ν

0 µ 6= ν

can be proven to be basis of V ∗

Definition 3.1.2 (Double dual vector space).

V ∗∗ = {f |f : v∗ → R1}

Now we do the follow identification

ω∗∗(ω∗) = ω∗(v)

ω∗∗ ←→ v

Then the double dual vector space can be identified with the space V .

9



10 CHAPTER 3. TENSOR

3.2 Tensor

Definition 3.2.1 (Tensor). A tensor of type (k, l) over V is

T : V × V × · · · × V︸ ︷︷ ︸
k

×V ∗ × · · · × V ∗︸ ︷︷ ︸
l

−→ R1

• T = {T}is an nk+l dimensional vector space;
• each element T is multilinear;
• any T can be completely known if we know how it acts on the basis {v∗} of
V ∗ and {v} of V .

T ←− T (v∗i1 , v∗i2 , . . . , v∗ik ; vj1 , . . . , vjl)

Two tensor operations

Definition 3.2.2 (Contraction).

C : T (k, l) −→ T (k − 1, l − 1)

CT =

n∑
σ=1

T (. . . , vσ∗, . . . ; . . . , vσ, . . . )

Change the vectors at ith, jth positions to a pair of basis.
Contraction between ith dual and jth positions.
• Contraction is independent of change of basis for V , V ∗.

Definition 3.2.3 (Outer product).

T ⊗ T ′ ≡ T · T ′

T (k + k′, l + l′) ≡
{
T ⊗ T ′

T ∈ T (k, l);T ′ ∈ T (k′, l′)
}
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• Outer product form a new tensor. Their collection forms a vector space too.
• {vµ1 ⊗ · · · ⊗ vµk ⊗ · · · ⊗ vν

∗
1 ⊗ · · · ⊗ vv

∗
l } forms a basis for T (k, l).

Every T of type (k, l) can be expressed as

T =

n∑
µ1...νl=1

Tµ1...µk
ν1...νl

vµ1
⊗ · · · ⊗ vν

∗
l

Tµ1,...,µk
ν1,...,νl

are called components of T .

Definition 3.2.4 (Contraction and out product in terms of components). Con-
traction in terms of components:

(CT )µ1···µk−1
ν1...νl−1

=

n∑
σ=1

Tµ1...σ...µk
ν1...σ...νk−1

Out product in terms of components:

S = T ⊗ T ′

S
µ1...µk+k′

ν1...νl+l′ = Tµ1...µk
ν1...νl

T
′µk+1...µk+k′

νl+1...νl+l′

we will mostly work with components in this course.

Applying to tangent space Vp of p ∈M
• V ∗p is called cotangent space;
• v ∈ V ∗p is called contravariant vectors;
v ∈ V ∗p is called covariant vectors;
convention: contravariant vector component use superscript vµ;
convariant vector component use subscript vµ
• Vp basis:

∂/∂x′, ∂/∂x2, . . . , ∂/∂xn

V ∗p basis denoted as dx1, . . . , dxn(only symbols; defined through dxµ(
∂

∂xν
) =

δµν ).
• Change of basis

v′µ
′

=

n∑
µ=1

vµ
∂x′µ

′

∂xµ
(3.1)

ω′µ′ =

n∑
µ=1

ωµ
∂xµ

∂x′µ′
(3.2)

T
′µ′1...µ

′
k

ν′1...ν
′
l

=

n∑
µ1,...,νl=1

Tµ1...µk
ν1...νl

∂x′µ
′
1

∂xµ1
· · · · · ∂x

νl

∂x′ν
′
l

(3.3)

• Tensor field on M = {one tensor from each point on M}. A tensor field is
called “smooth” if T (ω1, . . . , ωk; v1, . . . , vl) is smooth, where ω1, . . . , ωk are arbi-
trary k smooth covariant vector field, v1, . . . , vl are arbitrary l smooth covariant
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vector field.
Metric tensor
A metric tensor, g, on a manifold M, is a symmetric, nondegenerate tensor of
type (0, 2).
• symmetric

g(v1, v2) = g(v2, v1) vi ∈ Vp

• non-degenerate:
if g(v, v1) = 0 for all v ∈ Vp, then v1 = 0 .

So a metric is a inner product on the tangent space at each point.
Notation:

g =
∑
µ,ν

gµνdx
µ ⊗ dxν

Sometimes, we write g as ds2, omitting ⊗, so that

ds2 =
∑
µ,ν

gµνdx
µdxν

• gµν is non-degenerate, therefore it is diagonalizable to

1
. . .

1
−1

. . .

−1


This is called signature of the metric. Positive definite metric is called Rie-
mannian. Diag(− + + +) is called Lorentzian (Spacetime has this signature).
• g as a map and its inverse

gµν : Vp × Vp −→ R1 type (0,2) tensor

For a v ∈ Vp fixed, then g(·, v) : Vp −→ R1; therefore,

g(·, v) ∈ V ∗

In another words, g : V −→ V ∗,
∑
µ gµνv

µ is a dual vector for any vector vµ.
This map is one-to-one correspondant. Then an inverse map exist

g−1 : V ∗ −→ V g−1 is type (2,0)

Components are written as gµν . By definition, we also require∑
ν

gµνg
νσ = δσµ (3.4)
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Since
∑
µ gµνv

µ is a vector in dual space, we use vν to denote its components.
vν =

∑
µ gµνv

µ.
Similarly,

g : T (k, l) −→ T (k − 1, l + 1)

In component notation,∑
σ

gσηT
µ1...µiσµi+2...µk

ν1...νl
= Tµ1...µi

η
µi+2,...µl

ν1...νl

Similarly, g−1 : T (k, l) −→ T (k + 1, l − 1).
And in component notation,∑

σ

gσηTµ1...µk
ν1...νiσνi+2...νl

= Tµ1...µk
ν1...νi

η
νi+2...νl

Notation:
Symmetric tensor built from any tensor of type (0, l)

T(µν) =
1

2
(Tµν + Tνµ)

T(µ1...µl) =
1

l!

∑
π∈perm

Tµπ(1)...µπ(l)

perm here is the permutation of {1, . . . , l}.
Anti-symmetric tensor built from (0, l) type

T[µν] =
1

2
(Tµν − Tνµ)

T[µ1...µl] =
1

l!

∑
π∈perm

δπTµπ(1)...µπ(l)

where δπ =

{
1 even permutation

−1 odd permutation
.

We can build partially symmetric, anti-symmetric tensors, e.g.,

T
(µν)σ

[αβ] =
1

4
[Tµνσαβ + T νµσαβ − T

µνσ
βα − T

νµσ
βα]

A totally anti-symmetric tensor

Tµ1...µl = T[µ1...µl]

is called a differential l-form.

Einstein summation rule
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For any contraction, or summation over particular indices, we omit the

sum symbol
∑

n1,...,nl

. So when two indices repeatly appear in a term, they are

summed.
E.g.,

TµνS η
µσ ≡

∑
µ

TµνS η
µσ



Chapter 4

Curvature

4.1 Derivative

4.1.1 We seek a covariant derivative operator, ∇.

(1) ∇: T of type (k, l) −→ T of type (k, l + 1).
(2) Linearity

∇µ(aTσ1...σk
η1...ηl

+ bSσ1...σm
η1...ηn)

= a∇µTσ1...σk
η1...ηl

+ b∇µSσ1...σm
η1...ηn (4.1)

where a, b ∈ R1.
(3) Leibnitz rule

∇µ(Tσ1...σk
η1...ηl

Sα1...αm
β1...βn

) = (∇µTσ1...σk
η1...ηl

)Sα1...αm
β1...βn

+Tσ1...σk
η1...ηl

∇µSα1...αm
β1...βn

(4) Commutativity with contraction

∇µ(Tα1...ν...αl
β1...ν...βk

) = ∇µTα1...ν...αl
β1...ν...βk

(4.2)

(5) For scalar field, tangent vector = directional derivative

for all f ∈ F , ta ∈ Vp, t(f) = ta∇af

(6) Torsion free

for all f ∈ F , ∇a∇bf = ∇b∇af

(7) Inner product of two vectors remain unchanged during parallel-transport:

∇agbc = 0 (4.3)

Under these conditions, there exist a unique ∇µ:

∇µTσ1...σk
η1...ηl

=∂µT
σ1...σl

η1...ηl
+
∑
i

ΓσiµνT
σ1...ν...σk

η1...ηl
(4.4)

−
∑
j

ΓµµηjT
σ1...σk

η1...ν...ηl
(4.5)

15
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where ∂µ ≡
∂

∂xµ

Γρµν =
1

2
gρσ(∂µgµσ + ∂νgµσ − ∂σgµν) (Christoffel symbol) (4.6)

• ∇µ is a generalization of ∂µ, when g is constant, Γρµν = 0, ∇µ = ∂µ.
• ∇µ is usually not commutative. ∇µ∇νT 6= ∇ν∇µT .
• ∂µT usually do not produce a tensor, because ∇µ does and ∇µ 6= ∂µ except
special cases.

4.1.2 Parallel transport

• Parallel transport (P.T)
≈ generalization in “curved space” the concept of “keeping the vector constant”.
• Given a curve xµ(s), the P.T of a vector vν along the curve in flat space is

dvν

ds
=
∂vν

∂xµ
dxµ

ds
= 0 (4.7)

∂vν

∂xµ
however is not a tensor in curved space, so we should generalize it:

tµ∇µvν = 0 (4.8)

where tµ =
dxµ

ds
.

• P.T of a general tensor

tµ∇µTσ1...σl
η1...ηl

= 0 (4.9)

• This equation is an tensor equation. A tensor equation won’t be changed
under change of coordinate system.

T
′σ′1...σ

′
k

η′1...η
′
l

= Tσ1...σk
η1...ηl

∂x′σ
′
1

∂xσ1
. . .

∂xηl

∂x′η
′
l

= 0 (4.10)

4.2 Curvature

“Curvature can be sensed by parallel transport”.
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4.2.1 Riemann curvature tensor

Consider f ∈ F , ω ∈ V ∗, and

∇µ∇ν(fωσ) = ∇µ(∇νf · ωσ + f∇νωσ)

= (∇µ∇νf)ωσ +∇νf · ∇µωσ +∇µf∇νωσ + f∇µ∇νωσ (4.11)

∇µ∇ν(fωσ)−∇ν∇µ(fωσ) = f(∇µ∇νωσ −∇ν∇µωσ) (4.12)

(∇µ∇ν −∇ν∇µ)(fωσ) = f(∇µ∇ν −∇ν∇µ)ωσ (4.13)

Now (∇µ∇ν−∇ν∇µ)ωσ


p

depend only on the value of ωσ at p. Then fωσ ∈ V ∗,
f(∇µ∇ν −∇ν∇µ)ωσ ∈ T (0, 3).
∀p ∈M, ∇µ∇ν −∇ν∇µ : fωσ −→ T (0, 3). Its action is of tensor type (1, 3).
There exist a tensor field R η

µνσ , s.t. for ωσ,

(∇µ∇νωσ −∇ν∇µωσ) = R η
µνσωη (4.14)

R η
µνσ : Riemann tensor.
• R η

µνσ senses whether the manifold is curved.

4.2.2 How R η
µνσ is related to failure of a vector

Returning to its initial value after P.T. along closed curve, i.e., related to cur-
vature.

Consider P.T. vµ from point p. It is convinient if consider variation of vµωµ, ωµ
being arbitrary dual vector field.

δ1 = ∆t
∂

∂t
(vµωµ)


( ∆t

2 ,0)
(4.15)

= ∆tT ν∇ν(vνωµ)

= ∆tT ν(∇νωµ)vµ|( ∆t
2 ,0)
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T ν ≡ ∂xν

∂t
is the tangent vector to curve at constant s.

δ1 + δ3 = ∆t
{
vµT ν∇νωµ|(∆t/2,0)− vµT ν∇νωµ|(∆t/2,∆s)

}
−→ ∆tO(∆s) (4.16)

Similarly,

δ2 + δ4 → ∆sO(∆t) (4.17)

δ1+δ3+δ2+δ4 is at least a 2nd order infinitesimal. i.e., P.T. is path-independent
at 1st order.

Indeed, we can evaluate the δ1 + δ3 to further accuracy.

δ1 + δ3 = ∆t
{
vµT ν∇νωµ|(∆t/2,0) − vµT ν∇µωµ|(∆t/2,∆s)

}
= −∆t∆s

∂

∂s

(
vµT ν∇νωµ|(∆t/2,∆s)

)
= −∆t∆s

[
(T ν∇νωµ)(Sα∇αvµ) + vµSα∇α(T ν∇νωµ)

]
(∆t/2,∆s/2)

= −∆t∆svµSα∇α(T ν∇νωµ)|(∆t/2,∆s/2)

≈ −∆t∆svµTαSβ∇α(T ν∇νωµ)|p +O(∆t2)O(∆t2)

δ(vµωµ) = ∆t∆svµ[Tα∇α(Sν∇νωµ)− Sα∇α(T ν∇νωµ)]

= ∆t∆svµTαsβ(∇α∇β −∇β∇α)ωµ

= ∆t∆svµTαSβR ν
αβµων

(4.18)

Since ωµ is arbitrary, the only possibility is

δ(vν) = ∆t∆svµTαSβR ν
αβµ (4.19)

This shows that indeedR ν
αβµ (Riemann tensor) is related to the path-dependence

of parallel transport, which is further related to curvature.

4.2.3 Properties of Riemann tensor

(1) Rβµνα = −Rβνµβ , Rµναβ = −Rνµαβ
(2) Rβ[µνα] = 0

(3) Rµναβ = −Rµνβα
(4) ∇[σR

β
µν]α

Proof. (1) Definition, ∀ωµ

(∇α∇β −∇β∇α)ωµ = R ν
αβµων (4.20)
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(2) ∇µ∇νωα = 0.
(3) Before prove this, note a result similar to the introduction of Riemann tensor:

(∇µ∇ν −∇ν∇µ)Tσ1...σk
η1...ηl

=−
k∑
i=1

R σi
µνα T

σ1...α...σk
η1...ηl

+

l∑
j=1

R α
µνηiT

σ1...σk
η1...α...ηl

(4.21)

0 = (∇µ∇ν −∇ν∇µ)gαβ = R σ
µναgσβ +R σ

µνβ gασ = Rµναβ +Rµνβα = 0 (4.22)

(4)∀ωα,

(∇µ∇ν −∇ν∇µ)∇αωβ = R σ
µνα∇σωβ +R σ

µνβ∇αωσ (4.23)

∇α(∇µ∇νωσ −∇ν∇µωσ) = ∇α(R η
µνσωη) = ωη∇αR η

µνσ +R η
µνσ∇αωη (4.24)

Autisymmetrize both equations for µ, ν, α, L.Hs becomes equal.

Rσ[µνα]∇∇ωβ +Rσ[µν|β|∇α]ωσ = ωη∇[αR
η
µν]σ +Rη[µν|σ|∇α]ωη (4.25)

∇[αR
η
µν]σ = 0 (4.26)

4.2.4 Ricci tensor, Ricci scalar, Einstein tensor, Weyl ten-
sor

From properties (1),(2),(3),(4) of Riemann tensor, there are
n2(n2 − 1)

2
inde-

pendent components for n-dim manifold Riemann tensor. Decomposition into
“trace part” and “trace free part”:
(1)Rµα ≡ R ν

µνα “trace part”.
This is called Ricci tensor: symmetric Rµα = Rαµ
From this, define Ricci scalar/curvature

R ≡ Rµµ (4.27)

(2) Trace-free part

Cµναβ = Rµναβ +
2

n− 2
(gµ[αRβ]ν − gµ[αRβ]µ)

− 2

(n− 1)(n− 2)
Rgµ[αgβ]µ (4.28)

This is called Weyl tensor/conformal tensor.
(3) Einstein tensor

Gµν ≡ Rµν −
1

2
Rgµν (4.29)

Property:∇αGµν = 0
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4.3 Geodesics

Intuatively, “straightest possible curve”.

4.3.1 Geodesic equation

P.T. a vector vµ along a curve with tangent T ν

T ν∇νvµ = 0 (4.30)

Geodesic: A curve whose tangent vector is parallel propagated along itself:

T ν∇νTµ = 0 (4.31)

Supposing Tµ = Tµ(t), i.e., the curve is parameterized by t, and using

∇νTµ = ∂νT
µ + ΓµνσT

σ, and dT ν =
dxν

dt
, we get

dTµ

dt
+
∑
σ,ν

ΓµσνT
σT ν = 0 (4.32)

i.e., the curve is xµ = xµ(t)

d2xµ

dt2
+
∑
σ,ν

Γµσν
dxσ

dt

dxν

dt
= 0 (4.33)

Eq(8.61), Eq(8.64), Eq(4.33) are the Geodesic equations.
• It is a system of second order ordinary differential equations (ODEs). Mathe-
matically, a initial value problem of xµ(t). Theory of ODE solution uniqueness
tells us:

There always exists a unique solution for any given initial xµ(t0) and dxµ/dt|t=t0 .
I.e., given any p ∈ C ⊂M and a tengent Tp at p, there exists a unique geodesic
passing p with tangent Tp.

4.3.2 Proper length or proper time along the geodesics

• A vector Tµ is called


timelike gµνT

µT ν < 0

null gµνT
µT ν = 0

spacelike gµνT
µT ν > 0

, gµνT
µT ν is called norm of

Tµ. gµνT
µSν is called inner product of Tµ and Sν .

• A vector pair can not change their inner product during P.T. A vector can
not change its norm during P.T.
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Proof. For tangent tµ of any curve,

tµ∇µ(gσηT
σSη)

= (tµ∇µTσ)gσηS
η + (tµ∇µSηgσηTσ) + tµ(∇µgσηTσSη)

= 0 + 0 + 0 = 0 (4.34)

tµ is arbitrary ⇒ gσηT
σSη = constant during P.T.

• Then, a geodesic (whose tangent is P.T. along itself), its tangent vectors at
all points are either timelike, null, spacelike; but not change its charcter during
P.T.

A geodesic’s(or curve) tangents


timelike⇒ timelike geodesic(curve)

null⇒ null geodesic(curve)

spacelike⇒ spacelike geodesic(curve)

For timelike geodesic/curve, define proper time

τ =

∫ t=tf

t=ti

(−gµνTµT ν)
1
2 dt (4.35)

For spacelike geodesics/curve, define proper length

l =

∫ t=tf

t=ti

(gµνT
µT ν)

1
2 dt (4.36)

or combined

l =

∫ tf

ti

(|gµνTµT ν |)
1
2 dt (4.37)

4.3.3 Properties of (timelike/null/spacelike) geodesics

(1) Proper time or proper length is independent of the parameterization of the
curve. Consider xµ −→ xµ(t(s)) = xµ(s)

τ =

∫
(−gµνTµT ν)

1
2 dt =

∫
(−gµν

dxµ

dt

dxν

dt
)

1
2 dt

=

∫
(−gµν

dxµ

ds

dxν

ds
)

1
2
ds

dt
· dt

=

∫
(−gµνsµsν)

1
2 ds = τs (4.38)

Essentially, reparameterization is a change of variable for a definite integral.

4.3.4 A globally extreme curve (shortest length or great-
est proper time)

Connecting two points, if exists, there must be a (spacelike or timelike) geodesic.
A spacelike/timelike geodesic is at least a local extreme.
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Proof. Consider a spacelike curve, fixed end points t = a, t = b,

l =

∫ b

a

(
∑
µ,ν

gµν
dxµ

dt

dxν

dt
)

1
2 dt (4.39)

δl =

∫ b

a

[
∑
µν

gµν
dxµ

dt

dxνdt

]

− 1
2 ∑
α,β

gαβ
dxα

dt

d(σxβ)

dt
+

1

2

∑
σ

∂gαβ
∂xσ

δxσ
dxα

dt

dxβ

dt
dt

(4.40)

l will not be changed by reparameterization, therefore we can set
∑
µ,ν

gµν
dxµ

dt

dxν

dt
=

1

δl =

∫ b

a

∑
α,β

gαβ
dxα

dt

dδxβ

dt
+

1

2

∑
σ

gαβ
∂xσ

δxσ
dxα

dt

xβ

dt
dt

−
∑
α

gαβ
d2xα

dt2
−
∑
αλ

∂gαβ
∂xλ

dxλ

dt

xα

dt
+

1

2

∑
αλ

∂gαλ
∂xβ

dxα

dt

dxλ

dt
= 0

− gαβ
d2xγ

dt2
+

1

2
[∂βgαβ − ∂λgαβ − ∂αgλβ ]

dxα

dt

dxλ

dt
= 0

− d2xγ

dt2
+

1

2
gβγ [∂βgαλ − ∂λgαβ − ∂αgλβ ]

dxα

dt

dxλ

dt
= 0

(4.41)

Geodesic equation
d2xγ

dt2
+ Γγαγ

dxα

dt

dxλ

dt
= 0 (4.42)

4.4 Collection of geodesics

In flat manifold, initially parallel geodesics remain parallel forever. In curved
manifold, they will not necessarily do this. we study how geodesics deviate from
each other.
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• To be concerete, consider a one-parameter family of geodesics, γs(t). I.e., for
each s ∈ R

γs(t) : t −→ C ∈M (4.43)

Here t is the affine parameter.
Then these geodesics define a 1 + 1 dimensional surface embedded in M. Its
coordinates can be chosen as s and t:

M = xµ(s, t) (4.44)

Two natural vector fields

Tµ =
∂xµ

∂t
tangent vector (4.45)

Sµ ≡ ∂xµ

∂s
“deviation vector” (4.46)

• Then how fast the sµ changes can characterize how fast geodesics deviate from
each other. Define “relative velocity of geodesics”

V µ = (∇TS)µ = T ρ∇ρSµ (4.47)

Further more, how fast this “velocity” change becomes “acceleration”.
Define “relative accelaration of geodesics”

aµ = (∇TV )µ = T ρ∇ρV µ (4.48)

The names are just names, but these quantities are well defined.
• We would like to show aµ is related to the curvature of the manifold.

aµ = T ρ∇ρ(Tσ∇σSµ) (4.49)

= T ρ∇ρ(Sσ∇σTµ)

= (T ρ∇ρsσ)(∇σTµ) + T ρSσ∇ρ∇σTµ

= (Sρ∇ρTσ)(∇σTµ) + T ρSσ(∇σ∇ρTµ +RµνρσT
ν)

= (Sρ∇ρTσ)(∇σTµ) + sσ∇σ(T ρ∇ρTµ) +RµνρσT
νT ρSσ − (Sσ∇σT ρ)∇ρTµ

= RµνρσT
νTρS

σ (4.50)

commutator of covariant derivatives and geodesic condition T ρ∇ρTµ = 0 are
used.

Therefore, geodesics will accelerate towards or away from each other if and
only if Rµναβ 6= 0. Initially parallel geodesics will not be parallel again if and
only if Rνναβ 6= 0.
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Chapter 5

Motivation and special
relativity

5.1 Short review of S.R.

Now we motivate the introduction of general relativity, during this we also do
a short review of S.R.

• Why we study tensor calculus?
All physical laws can be expressed as a tensor equation.
All physical measurements are either scalar or components of vectors, ten-

sors.
• Physical laws should not depend on the frame or any particular vector/tensor
fields.

I.e., laws formulated in different frames should predict the same physics.
More generally, the metric is the only quantity associated with spacetime

that will appear in physics laws.(General covariance principle)
• In prerelativity physics, laws also follow special covariance principle, physical
laws (written in components form) remain unchanged under metric rotation and
translation; plus time reversal and space parity.

5.2 Special Relativity

5.2.1 The spacetime in S.R. is an R4 manifold

The mapping spacetime −→ R4 is called a global inertial coordinate sys-
tem(I.C.S).

The infinitesimal spacetime interval is

(ds)2 = −(cdt)2 + (dx)2 + (dy)2 + (dz)2 (5.1)

25
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Remember the norm(or “interval”) between two points on a manifold is

(ds)2 = gµνdx
µdxν (5.2)

This suggest metric in S.R. is

ηµν = diag(−1, 1, 1, 1, ) =


−1

1
1

1

 (5.3)

⇒ Christoffal symbol Γµνσ = 0;
⇒ Covariant derivative ∇µ = ∂µ;
Spacetime in SR is an 4-d manifold with metric ηµν . This spacetime is called
Minkowski space.

5.2.2 Pioncare transforms

S.R. also asserts that the speed of light in vaccum in any inertial coordinate
system is the same.
Combing with the isotropic property(or assumption) of spacetime, one can prove
that the spaceetime interval is invariant in different I.C.S. Also, from the rela-
tivity principle, I.C.S. can only be connected by linear transforms.
Now linear transforms should be

[X ′µ] = Λ[Xµ] + [Aµ] (5.4)

(1)[Aµ] part correspond to translation:

x′µ = xµ + aµ (5.5)

(2) Λ[xµ] part correspond to “generalized rotation”.
To have spacetime intervals invariant

(ds)2 = [dxµ]T [ηµν ][dxν ] = [dx′µ]T ηµν [dx′ν ]

= [dxµ]TΛT [ηµν ]Λ[dxν ] (5.6)

[ηµν ] = ΛT [ηµν ]Λ (5.7)

ηρσ = ΛµρΛνσηµν (5.8)

[Λ] called Lorentz transforms.

First kind Λ: conventional rotations

[Λµν ] =


1 0 0 0
1 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 0

 (5.9)
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Rotation in x-y plane by angle θ.
Second kind Λ boost:

[Λµν ] =


coshφ − sinhφ 0 0
− sinhφ coshφ 0 0

0 0 1 0
0 0 0 1

 (5.10)

Boost along X-direction.
Why this is a boost?

Consider the [X ′µ] =


0
0
0
0

 point in the [xµ] coordinate system

{
t′ = t coshφ− x sinhφ

x′ = −t sinhφ+ x coshφ

The t′ = 0, x′1 = x′2 = x′3 = 0 point correspond to (t, x1, x2, x3) point s.t

x

t
=

sinhφ

coshφ
= tanhφ

φ=tanh−1 v−−−−−−−→ v (5.11)

So we went from a I.C.S. of velocity zero to velocity v ⇒ boost{
t′ = γ(t− vx)

x′ = γ(x− vt)

γ =
1√

1− v2
. Length contraction and time dilation.

There are 6 independent rotations and boosts. They form a proper Lorentz
group, SO(3,1), non-abelian.

Proper Lorentz transforms, together with 4 translations, from a ten param-
eter group, called poincare group. Non-abelian either.

Third kind Λ: discrete transform

[T ] =


−1

1
1

1

 time reverse (5.12)

[T ] =


1
−1

−1
−1

 parity transform (5.13)

The proper Lorentz transform plus time reverse and parity forms a full Lorentz
group, O(3, 1).
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5.2.3 Physical laws in S.R.

All quantities and laws has to be written as tensors to garantie invariance in
different I.C.S.
• 4-velocity:

A timelike curve C parameterized by its proper time τ .

4 velocity uµ ≡ dxµ(τ)

dτ
Property: uµuµ = −1.
Proper time is defined as for any parameterization xµ(λ)

τ =

∫ λ

λi

(−gµνTµT ν)
1
2 dλ (5.14)

where Tµ =
dxµ(λ)

dλ
.

• 4 momentum: material particles have an attribute called “real mass” m.
4-momentum:

pµ = muµ (5.15)

• Energy and energy-momentum tensor
Energy measured by a moving observer with 4-velocity vµ of an particle with
4-velocity uµ is defined as

E = −pµvµ = −mgµνuµvν (5.16)

when observer is at rest w.r.t particle, vµ = uν

E = mc2, where c = 1 (5.17)

Generalize this idea, the energy-momentum tensor of a contimass matter(stress-
energy tensor) is denoted as Tµν .

Tµνv
µvν ⇒ energy density

i.e., the mass energy per unit volume measured by an vµ observer.
Conservation of matter: ∂µT

µν = 0.

5.2.4 Different matter

• Perfect fluid: a fluid that is isotropic in its rest frame and having no stress.

Tµν = ρuµuν + p(ηµν + uµuν)

= (ρ+ p)uµuν + pηµν (5.18)
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In rest frame:

[Tµν ] =


ρ

p
p

p

 (5.19)

For pressureless dust in rest frame:

[Tµν ] =


ρ

0
0

0

 (5.20)

Conservation:
∂µTµν = 0 (5.21)

ρ: energy density in rest frame.
p: pressure in rest frame.
uµ: 4-velocity of fluid.

• In the limit of nonrelativistic, p � ρ, uµ = (1, ~v), |~v|dp
dt
� |~∇p|, derive the

Euler’s equations of fluids.
• Electromagnetic field

Tµν =
1

4π
FµαF

α
ν −

1

4
ηµνFαβF

αβ (5.22)

Fµν = ∂µAν − ∂νAµ is called field strength, Aµ is the vector potential.
Electric vector field Eµ = Fµνv

ν .
Magnetic vector field Bµ = − 1

2ε
βγ

µα Fβγv
α, ε is the totally anti-symmetric ten-

sor with ε0123 = 1.
Maxwell’s equation{

∂µFµν = −4πjν

∂[µFαβ] = 0
jν is the electric charge density current.

Lorentz force law on a particle with 4-velocity uµ:

uµ∂µu
ν =

q

m
F νµu

µ (5.23)

• Scalar field described by Lagrangian

L = −1

2
(∂µφ∂

µφ+m2φ2) (5.24)

The energy-momentum tensor is

Tµν = ∂µφ∂µφ−
1

2
ηµν(∂αφ∂αφ+m2φ2) (5.25)

Prove that for any observer, the E.M.T for perfect fluid, electromagnetic
field and scalar field satisfies the condition

Tµνv
µvν ≥ 0 (5.26)

This is called (weak) energy condition.



30 CHAPTER 5. MOTIVATION AND SPECIAL RELATIVITY



Chapter 6

General Relativity and
Einstein Equation

6.1 Motivation

We start from basic principles and attempt to argue that they lead naturally to
an almost unique physical theory.
• Weak equivalence principle(WEP)

~f = mi~a mi : inertial mass

~fg = mg
~∇φ

mg : gravitational mass φ : gravitational potential

WEP: mi 6= mg is the same for anybody.

• Einstein E.P.

31
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⇒ The above box should be small for the argument to work.
⇒ After S.R., the equivalence of “mass” becomes less meaningful. After all,
mass can be converted to other format.
This motivated Einstein for his E.E.P.:(the principle of equivalence)

In small enough regions, the law of physical reduces to those of S.R. All
bodies are influenced by gravity, and all bodies fall precisely the same way in a
gravitational field.
E.E.P⇒ Spacetime should be considered as a curved manifold.

↓ No global inertial frame because gravity is inescapable. The establishment
of global inertial frame in S.R. implicitly assumed the existence of a force-free
reference. Now this is impossible. “The acceleration due to gravity” becomes
an imprecise statement, because we don’t have a frame for measurement.
↓ Instead we say bodies under influence of gravity (only), do “free falling” (along
their geodesics in a curved spacetime).
↓ Inertial frames have to become “local”. When the region is small enough, we
expect the influence of gravity on the “box(frame)” is universal. S.R. should be
restored here.
↓ The best we can do is to associate a “local inertial frame” with each particle
moving freely in gravity (free falling).

Einstein then tried to find an equation that describes the influence of gravity
on matter. [Note the E.E.P. is a postulate: it can not be proven but be falsified.]

6.2 Einstein equation

We start from an equation in classical mechanics, which connects the spacetime
geometry with matter distribution, and then use the above principles and in-
tuitions as guidelines. Study the description of tidal acceleration in Newtonian
mechanics and G.R. I.e., Consider the free fall of two test particles:
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In N.M., the free falling is described by(d2xi
dt2

)
P

= −
( ∂φ
∂xi

)
P
,

(d2xj
dt2

)
Q

= −
( ∂φ
∂xj

)
Q

(6.1)

φ: gravitational potential.

Then the separation of P and Q, changes as free falls., ~x = (xj)P − (xj)Q.
When the separation is itself small

d2~xj
dt2

= −
( ∂2φ

∂xj∂xk

)
~xk (6.2)

Taylor expansion can prove this.
I.e., the “relative acceleration of geodesics”

aµ = −(∂β∂
µφ)xβ (6.3)

In G.R./differential geometry,

aµ = −R µ
αβγv

αvγxβ (6.4)

• Guess R µ
αβγv

αvγ ←→ ∂β∂
µφ.

∇2φ = 4πρ Poisson’s equation (6.5)

ρ: mass(energy) density of matter.

ρ←→ Tαγv
αvγ (6.6)

Tαγ :E.M. tensor
vµ: velocity of free falling fluid
• Suggest:

R µ
αµγv

αvγ = 4πTαγv
αvγ (6.7)

Rαγ = 4πTαγ (6.8)
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This was first postulated by Einstein.
• However from Bianchi identity,

∇α(Rαγ −
1

2
gαγR) = 0. (6.9)

From EM tensor conservation,

∇αTαγ = 0 (6.10)

so applying ∇α to Eq(6.8), we get

∇αR = 0 (6.11)

R = const (6.12)

Tµµ = const for any matter (6.13)

This is apparently unphysical.
• Now we want a relation satisfies Eq (6.10) and Eq (6.7). Such and equation
is found by Einstein in 1915,

Rµν −
1

2
Rgµν = 8πTµν (6.14)

The LHS tensor is actually named after Einstein, the Einstein tensor.
(1) This is the celebrated Einstein equation.
(2) From now on, we shift our focus of the course to the solution of this equation.
• First let us see that Eq (6.7) is indeed satisfied.

From

R = −8πT (6.15)

Rµν = 8π(Tµν −
1

2
gµνT ) (6.16)

when observer is roughly at rest with fluid vµvµ = −1

T ≈ −ρ = −Tαβvαvβ (6.17)

Then,

Rµνv
µvν = 8π(Tµνv

µvν) + 4πgµνTαβv
αvβvµvν

= 4πTµνv
µvν (6.18)

This recovers Eq(6.7).

6.3 Physical laws in G.R.

• general covariance
• locally reduce to S.R.
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(1) In G.R., physical quantities are still described by tensors.
Motions of particle are described by timelike curves.
Perfect fluid velocity uµ.
e.m.t, Tµν = ρuµuν + p(gµν + uµuν), E.m. field:Fµν .
(2) Physical laws are still described by tensor equations.
“Two principles requires equation being invariant under any coordinate trans-
form.”
Two rules should be applied to equations in S.R.
(a)

ηµν −→ gµν

↓ ↓
dig(−1,1, 1, 1) general

(b) ∂µ −→ ∇µ “minimal substitation”
A particle: momentum pµ = muµ

Perfect fluid: E.O.M. ∇µTµν = 0

⇒

{
uµ∇µρ+ (ρ+ p)∇µuµ = 0

(p+ ρ)uµ∇µuν + (gµν + uµuν)∇µp = 0

Scalar field:

Tµν = ∇µφ∇νφ−
1

2
gµν(∇σφ∇σφ+m2φ2) (6.19)

Electromagnetic field

Tµν =
1

4
{FµαF α

ν −
1

4
gµνFαβF

αβ} (6.20)

Maxwell’s equation
∇µFµν = −4πjν (6.21)

(3) However, these two rules “ηµν −→ gµν , ∂µ −→ ∇µ” are only guide lines.
It did not recover terms that will only appear due to curvature. For example,
Mexwell’s equations for vector gauge field Aµ(in the Lorentz gauge)

∇µ∇µAν −RµνAµ = −4πjν (6.22)

However, in S.R., the corresponding equations was

∂µ∂µAν = −4πjν (6.23)

∇µ∇µAν = −4πjν (6.24)

If “minimal substitution” was used, the −RµνAµ therm won’t be constructed.
However, Eq(6.22) is favors over Eq(6.23) because it satisfies current conserva-
tion ∇νjν = 0. So, the true physical equation really is determined from physics.
(In this case, the one with −RµνAµ), not the “minimal substitution” rules.

However, they are good guide lines. In our course, all equations will be the
one obtained from physical consideration.
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Chapter 7

Linear gravity

• G.R. is a new description of gravity. It should reduce to Newton’s gravity in
where it works: weak gravity and low speed.

7.1 Linearize G.R.

Consider metric

gµν = ηµν + γµν ηµν = diag(−1, 1, 1, 1) (7.1)

|γµν | � 1, then,
gµν = ηµν − γµν (7.2)

the Christoffel symbol

Γαµν =
1

2
ηαβ(∂µγνβ + ∂νγµβ − ∂βγµν) (7.3)

Ricci tensor

Rµν = ∂αΓαµν − ∂µΓααν

= ∂α∂(νγµ)α −
1

2
∂α∂αγµν −

1

2
∂µ∂νγ (7.4)

here γ = γαα .
Einstein tensor

Gµν = Rµν −
1

2
ηηνR

= ∂α∂(νγµ)α −
1

2
∂α∂αγµν −

1

2
ηµν(∂α∂βγαβ − ∂α∂αγ) (7.5)

Let us define γ̄µν = γµν − 1
2ηµνγ, then Einstein Equation,

Gµν = −1

2
∂α∂αγ̄µν + ∂α∂(ν γ̄µ)α −

1

2
ηµν∂

α∂β γ̄αβ = 8πTµν (7.6)

37
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Let us do an infinitesimal gauge transform with vector field ξα,

x′α = xα + ξα |ξα/xα| � 1 (7.7)

then,

g′µν = gαβ
∂x′α

∂xµ
∂x′β

∂xν

= (ηαβ + γαβ)(δαµ + ∂µξ
α)(δβν + ∂νξ

β) (7.8)

ηµν + γ′µν = ηµν + γµν + ∂νξµ + ∂µξν +O(ξ2) (7.9)

γ′µν = γµν + ∂µξν + ∂νξµ (7.10)

and,

γ′ = γ′αα = γαα + 2∂αξα = γ + 2∂αξα (7.11)

γ̄′µν = γ′µν −
1

2
ηµνγ

′

= γµν + ∂µξν + ∂νξµ −
1

2
ηµν(γ + 2∂αξα)

= γ̄µν + ∂µξν + ∂νξµ − ηµν∂αξα (7.12)

∂ν γ̄′µν = ∂ν γ̄µν + ∂ν∂µξν + ∂ν∂νξµ − ∂µ∂αξα
= ∂ν γ̄µν + ∂ν∂νξµ (7.13)

Since ξα is the gauge, we have the freedom to choose it s.t.,

∂ν γ̄µν = −∂ν∂νξµ (7.14)

then, ∂ν γ̄′µν = 0.(This is an analog of the “Lorentz gauge” condition in E&M
theory.)

Now the E.E under the gauge transform becomes

−1

2
∂α∂αγ̄

′
µν = 8πT ′µν (7.15)

Dropping the ′ for the simplicity sake,

∂α∂αγ̄µν = −16πTµν (L.E.E) (7.16)

7.2 The Newtonian limit

• In the Newtonian limit, the fluids should have

ρ� p (rest energy dominates)

4-velocityuµ = (1, 0, 0, 0) (slow speed condition) (7.17)

then their e.m.t becomes
Tµν ≈ ρuµuν (7.18)
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• More generally, for other matter form in the Newtonian limit, we assume

[Tµν ] =

[
X 0
0 0

]
(7.19)

the ignorance of “0i” i = 1, 2, 3 components means that the velocity is small,
the ignorance of “ij” i = 1, 2, 3 components means stress is small.
• We therefore expect the metric to vary slowly.
We seek solutions with ∂0γµν = 0.
Then the L.E.E becomes

∇2γ̄00 = −16πρ (7.20)

∇2γ̄ij = 0 (7.21)

(7.22)

where ∇2 = ∂1∂1 + ∂2∂2 + ∂3∂3 is the Laplacian operator on space index. The
solution to Eq (7.21) and that satisfy the good asymptotic flatness is

γ̄ij (7.23)

The solution to Eq (7.20) is the following

γ̄00 = −4φ (7.24)

where φ satisfies
∇2φ = 4πρ (7.25)

Therefore γ̄µν = −4φtµtν , γ̄ = 4φ. Then the perturbative metric becomes

γµν = γ̄µν +
1

2
ηµνγ

= γ̄µν −
1

2
ηµν γ̄

= −(4tµtν + 2ηµν)φ (7.26)

The motion of a test particle is given by its geodesic

d2xµ

dτ2
+
∑
ρ,σ

Γµρσ(
dxρ

dτ
)(
dxσ

dτ
) = 0 (7.27)

Now in Newtonian limit, particle is slow moving

[dxµ/dτ ] = [1, 0, 0, 0] (7.28)

τ ≈ t (7.29)

Then the geodesics Eq.
d2xµ

dt2
= Γµ00 (7.30)
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For µ = 1, 2, 3, using γµν we get after neglecting time derivative

Γµ00 = −1

2

∂γ00

∂xµ
=

∂φ

∂xµ
(7.31)

Finally, we get
d2xµ

dt2
= −∂µφ µ = 1, 2, 3 (7.32)

i.e.
~a = −~∇φ (7.33)

We then recognize that
• φ is the gravitational potential
• the Eq (7.33) equation is the Newton’s law under gravity
• the Eq (7.25) is the Poisson equation

Newtonian limit is recovered.

7.3 Gravitational Radiation

7.3.1 The Coulomb gauge

The linearized E.E. in a sourcefree spacetime is

∂α∂αγ̄µν = 0 (L.E.E) (7.34)

It should also satisfy the Lorentz gauge condition

∂µγ̄µν = 0 (Lor.cond) (7.35)

In obtaining these, we made the gauge transform

γµν = γ
(original)
µν + ∂µξν + ∂νξµ (7.36)

and ξµ should satisfy
∂µ∂µξν = 0 (7.37)

Now we would like to show that there exist wave solutions to the L.E.E. The
key is Lorentz gauge condition does not fix the gauge completely. In addition
to Eq(7.37), we can set the condition for ξµ at a initial surface t = t0:

2
(
− ∂ξ0

∂t
+ ~∇ · ~ξ

)
= −γ (7.38)

2
(
− ~∇2ξ0 + ~∇ ·

(∂~ξ
∂t

))
= −∂γ

∂t
(7.39)

∂ξµ
∂t

+
∂ξ0
∂xµ

= −γ0µ (µ = 1, 2, 3) (7.40)

~∇2ξµ +
∂

∂xµ

(∂ξ0
∂t

)
= −∂γ0µ

∂t
(µ = 1, 2, 3) (7.41)
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This is an first order ODE system of {∂µξν , µ, ν = 0, 1, 2, 3}.
We assert that with these conditions on ξµ,

γ = 0 (7.42)

γ0µ = 0 (µ = 1, 2, 3) (7.43)

can be achieved throughout the source free spacetime.
Then substitute back into (Lorentz cond)

∂γ00

∂t
= 0 (7.44)

and into (L.E.E)
~∇2γ00 = 0 (7.45)

The only sensable solution then is γ00 = 0.(constant can be gauged away).
In short, the following can be achieved by just manipulating the gauge

γ = 0 (gc2) (7.46)

γ0µ = 0 (gc3) (7.47)

The combination of (Lorentz gauge) and (gc2),(gc3) forms the radiation (Coulom-
b) gauge condition.

Now we seek plane wave solutions of the L.E.E. of the form

γµν = Hµνexp(ikx
α) (7.48)

where Hµν = constant field.
Then the LEE’s solution exists if and only if

kµkµ = 0 (7.49)

the coulomb gauge conditoin

kµHµν = 0 (7.50)

H0ν = 0 (7.51)

Hµ
µ = 0 (7.52)

There are 4+4+1−1 equations (Eq(7.50),Eq(7.51) have 1 redudancy: H0νk
ν =

0), and there are 10 free components of Hµν . Therefore Eq(7.50)-Eq(7.52)
suggest that the gravitational wave have 2 independent(= 10 − 8) polarization
states. The wave is still waiting to be detected.
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Chapter 8

The Schwarzschild Solution

Now we would like to put G.R. to work:
to predict something beyond the Newtonian gravity.

Mathematically, put E.E. to work:
wherever gravity is important & manifest & Tµν is not too complicated.

⇒ Exterior space:
(a)gravity of our solar system ⇒ Schwarzsbhicd solution
(b)or some other exotic objects ⇒ e.g. black holes
(c)or even larger space. e.g. our universe ⇒ cosmology

We do the study according to (a)→ (c)→ (b) order

8.1 The spherecially symmetric metric

Apparently, the E.E will be much simpler if the metric has some symmetry.

The simplest: Minkovski metric gµν = ηµν =


−1

1
1

1


rotational symmetry + translational symmetry.
The next simplest: rotational symmetry⇒ spherically symmetric S2.

8.1.1 A handmoving argument

• Symmetry in differential geometry are described by Killing vectors.
• There exist a Frobenius’s theorem which assert that: a spherically symmetric
manifold can be foliated into spheres.
By foliation, we mean:

if we have an n-dimensional manifold foliated by m-dimensional subman-
ifolds, we can use a set of m coordinate functions ui on the m-dimensional
submanifold to tell us where we are on this submanifold and use n−m coordi-
nate functions vJ to tell us which m-dimensional submanifold we are on.

43
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1. Foliations by S2:

• R3 Foliation by S2 with an origin.

• A different manifold with an R× S2 topology “Wormhole”.

Here we suppressed one dimension of S2 and use a circle to represent
it. There is no point that looks like an “origin”. [Imagine yourself
being labeled on such an S2: as you walk in radial direction, you
experience a period of smaller radices and then it become large again.]
All of these are possible because we do not have a flat spacetime like
ηµν any more. We are allowing any 4-d manifold to be a possible
candidate of spacetime until we exclude them by experiments.

More precisely, an n-d manifold foliated by m-d submanifold has a
metric

ds2 = gµνdx
µdxν = gIJ(v)dvIdvJ + f(v)γij(u)duiduj (8.1)

Here vI , I = 1, . . . , n − m are the coordinates that fixing which
submanifold; ui, i = 1, . . . ,m are the coordinates on the m-dim sub-
manifold. γij(u) is the metric of the submanifold.
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Note:
(1) no cross terms dvIduj

(2) both gIJ(v) and f(v) are functions of vI alone.

8.1.2 The spherecally symmetric metric in 4−d spacetime

• Realize this theorem to our foliation by S2, then our m− dim submanifold is
an 2− d sphere. Its metric can always be chosen as

dΩ2 = dθ2 + sin2 θdφ2 (8.2)

where (θ, φ) are the two coordinates (same angles as you learned in spherical
cordinates in calculus).
Then the metric of our 4− d spacetime becomes from Eq(8.1)

ds2 = gaa(a, b)da2 + gab(a, b)(dadb+ dbda) + gbb(a, b)db
2 + r2(a, b)dΩ2 (8.3)

I.e., we use a,b to denote the rest 2 coordinates, and r2(a, b) to denote the f(v)
function in Eq(8.1).
• We are free to do coordinate transform from (a, b) to (a, r), i.e., a reparame-
terization of b by r.
(Condition: assuming r depends on b; otherwise do (a, b) → (r, b); even other-

wise,
∂r

∂a
= 0 =

∂r

∂b
.)

So the metric becomes db(r)→ ∂b

∂r
dr

ds2 =gaa(a, b(r))da2 + gab(a, b(r))
(
da
∂b

∂r
dr +

∂b

∂r
drda

)
+ gbb(a, b)

(∂b
∂r

)2

dr2 + r2dΩ2 (8.4)

define new functions and rename

ds2 = gaa(a, r)da2 + gar(a, r)(dadr + drda) + grr(a, r)dr
2 + r2dΩ2 (8.5)
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• Now we seek another transform of coordinates so that the crossing term
dadr + drda can be killed.
I.e., we seek a transform (a, r) → (t(a, r), s(a, r)), s.t., ds2 = gttdt

2 + gssds
2 +

r2(s, t)dΩ2.
The transform (a, r)→ (t(a, r), s(a, r)) is the most general one we can do, how-
ever it spoiled the r2dΩ2 term that we tried to put r as one of the coordinates.
Then, let us try to see whether we can find a transform T

T : (a, r) −→
(
t(a, r), r

)
(8.6)

s.t. 1©kill cross term, 2©keep r as a coordinate

ds2 = g′ttdt
2 + g′rrdr

2 + r2dΩ2 (8.7)

Does this coordinate transform exist?
If yes, then since

ds2 =(g′tt
∂2t

∂a2
)da2 + g′tt

∂t

∂a

∂t

∂r
(drda+ dadr)

+ (
∂2t

∂r2
g′tt + g′rr)dr

2 + r2dΩ2 (8.8)

Comparing to Eq(11.12), this require

gaa = g′tt
∂2t

∂a2
(8.9)

gar = g′tt
∂t

∂a

∂t

∂r
(8.10)

grr = g′tt
∂2t

∂r2
+ g′rr (8.11)

Three unknown functions t(a, r), g′tt(t(a, r), r), g
′
tt(t(a, r), r) and three equation-

s.
I.e., for any gaa, gar, grr, we can find such t(a, r), g′tt, g

′
rr that Eq (8.9)-Eq

(8.11) are satisfied. ⇒ The transform T always exists.
Using this transform (without having to know exactly its form), the metric with
spherical symmetry can be written as (dropping ’)

ds2 = gtt(t, r)dt
2 + grr(t, r)dr

2 + r2dΩ2 (8.12)

Claim: Any spherically symmetric metric in 4-d spacetime can be written into
Eq (8.12) form.
• Signature of spacetime in G.R.(-+++)
Therefore one of gtt(t, r) and grr(t, r) is negative and the other should be posi-
tive. We choose sign(gtt) = −1, sign(grr) = +1 for now.
Then the metric sometimes is written as

ds2 = −f(r, t)dt2 + h(r, t)dr2 + r2dΩ2 (f, h > 0) (8.13)
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or

ds2 = −e2α(t,r)dt2 + e2β(t,r)dr2 + r2dΩ2 (8.14)

The metrics Eq (8.12), Eq (8.13), Eq (8.14) are the best we can do to a spheri-
cally symmetric spacetime.

8.1.3 Vacuum

The metric of a simplest spacetime (except Minkaski) is known now. One the
other side of the E.E.

Gµν = 8πTµν (8.15)

the simplest form of Tµν is vacuum, defined by Tµν = 0.
• In vacuum, the E.E. can be re-written

Rµν −
1

2
gµνR = 8πTµν (8.16)

Taking trace

R− 1

2
· 4R = 8πT [T ≡ Tµµ] (8.17)

R = −8πT (8.18)

Rµν = 8π(Tµν −
1

2
Tgµν) (8.19)

In vacuum, becomes

Rµν = 0 (8.20)

• Reminder:
a© Tµν does not have to be zero everywhere in spacetime. As long as it is zero
in a large chunk, we sometimes call it a “vacuum” solution.
b© The word “vacuum” here is really a local word; meaning Tµν only need to
be zero locally.
c©E.E. is a local equation, like Maxwell’s equations in its differential form.

Everywhere Tµν = 0, the euqation Rµν = 0 has to be satisfied.
While for regions Tµν 6= 0, then Rµν need to satisfy the Gµν = 8Tµν at those
region.

8.1.4 Solution of the vacuum E.E for a spherically sym-
metric spacetime

• Published January 13, 1916 by Karl Schwarzschild.
• Written during W.W.I when he is in the Russian front.
• Einstein’s GR was known November 1915.
• First exact solution of E.E and reminds the most important one.
Einstein:
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I had not expected that one could formulate the exact solution of
the problem in such a simple way.

• K.Schwarzschild died shortly after his paper was published in 1916, because
of the disease he caught at Russian frontline. (May 11, 1916)
Start from

ds2 = −e2α(t,r)dt2 + e2β(t,r)dr2 + r2(dθ2 + sin2dφ2) (8.21)

(t, r, θ, ϕ) being coordinates.
Christoffel symbols

Γρµν =
1

2
gρλ(∂µgµλ + ∂νgλµ − ∂λgµν) (8.22)

Γρµν = Γρνµ(⇒ we need to only compute µ ≤ ν cases.) (8.23)

[gµν ] =


−e2α(t,r)

e2β(t,r)

r2

r2 sin2 θ

 (8.24)

[gµν ] =


−e−2α(t.r)

e−2β(t,r)

1
r2

1
r2sin2θ

 (8.25)

Γ0
00 =

1

2
g0λ(∂0g0λ + ∂0gλ0 − ∂λg00)

=
1

2
(−e−2α)(−e2α)2 · ∂0α

= ∂0α (8.26)

Γ0
01 =

1

2
g0λ(∂0g1λ + ∂1gλ0 − ∂λg01)

=
1

2
(−e−2α)(−e2α)2 · ∂1α

= ∂1α (8.27)

Γ0
11 =

1

2
g0λ(∂1g1λ + ∂1gλ1 − ∂λg11)

=
1

2
(−e−2α)(−e2β)∂0β · 2

= e2(β−α)∂0β (8.28)
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The rest

Γ0
µν =

1

2
g0λ(∂µgνµ + ∂νgλµ − ∂λgµν)

=
1

2
g00(∂µgν0 + ∂νg0µ − ∂0gµν)

=
1

2
g00(∂νg

00) = 0

=
1

2
g00(−∂0gνν) = 0 (ν ≥ 2, µ ≤ ν,not summed) (8.29)

Γ1
µν =

1

2
g1λ(∂µgνλ + ∂νgλν − ∂λgµν)

=
1

2
g11(∂µgν1 + ∂νg1µ − ∂1gµν) (8.30)

Γ1
00 =

1

2
g11(−∂1g00) =

1

2
(e−2β)(+e+2α)2∂1α

= e2(α−β)∂1α (8.31)

Γ1
01 =

1

2
g11(∂0g11) =

1

2
(e−2β)(e2β)2∂0β

= ∂0β (8.32)

Γ1
11 =

1

2
g11(∂1g11) =

1

2
(e−2β)(e2β)2∂1β

= ∂1β (8.33)

Γ1
µ2 =

1

2
g11(∂µg21 + ∂2g1µ − ∂1gµ2) (8.34)

Γ1
02 = Γ1

12 = 0 (8.35)

Γ1
22 =

1

2
g11(−∂1g22) =

1

2
(e−2β)(−2r)

= −re−2β (8.36)

Γ1
µ3 =

1

2
g11(∂µg31 + ∂3g1µ − ∂1gµ3) (8.37)

Γ1
03 = Γ1

13 = Γ1
23 = 0 (8.38)

Γ1
33 =

1

2
(e−2β)(−2r sin2 θ)

= −rsin2θe−2β (8.39)

Γ2
µν =

1

2
g2λ(∂µgνλ + ∂νgλµ − ∂λgµν)

=
1

2
g22(∂µgν2 + ∂νg2µ − ∂1gµν) (8.40)

Γ2
µ0 = Γ2

µ1 = 0 (8.41)

Γ2
µ2 =

1

2
g22(∂µg22 + ∂2g2µ − ∂2gµ2) =

1

2
g22(∂µgνν) (8.42)

Γ2
02 = 0 = Γ2

22 (8.43)

Γ2
12 =

1

2
g22(∂1g22)

=
1

2
· 1

r2
· 2r =

1

r
(8.44)

Γ2
µ3 =

1

2
g22(∂µg32 + ∂3g22 − ∂2gµ3) (8.45)

Γ2
03 = Γ2

13 = Γ2
23 = 0 (8.46)

Γ2
33 =

1

2

1

r2
(−2r2 sin θ cos θ) = − sin θ cos θ (8.47)
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Γ2
µν =

1

2
g3λ(∂µgνλ+ ∂λgλµ − ∂λgµν)

=
1

2
g33(∂µgν3 + ∂νg3µ − ∂3gµν)

=
1

2
g33(∂µgν3 + ∂νg3µ (8.48)

Γ3
µ0 = 0 = Γ3

01 = Γ3
11 = Γ3

02 = Γ3
12 = Γ3

22 = Γ3
03 (8.49)

Γ3
13 =

1

2

1

r2 sin2 θ
2r sin2 θ =

1

r
(8.50)

Γ3
23 =

1

2

1

r2 sin2 θ
2r2 sin θ cos θ =

cos θ

sin θ
(8.51)

Γ3
33 = 0 (8.52)

(8.53)

Riemann tensor
......
Ricci tensor

(1)R00 = [∂2
0β + (∂0β)2 − ∂0α∂0β]

+ e2(α−β)[∂2
1α+ (∂1α)2 − ∂1α∂1β −

2

r
∂1α] (8.54)

(2)R01 =
2

r
∂0β (8.55)

(3)R11 = −[∂2
1α+ (∂1α)− ∂1α∂1β −

2

r
∂1β]

+ e2(β−α)[∂2
0β + (∂0β)2 − ∂0α∂0β] (8.56)

(4)R22 = e−2β [r(∂1β − ∂1α)− 1] + 1 (8.57)

(5)R33 = R22sin
2θ (8.58)

E.E. for vacuum: Rµν = 0

∂0β = 0 (8.59)

∂0R22 = e−2β · r · (−∂0∂1α) = 0 (8.60)

These requires,

β = β(r) (8.61)

∂0α = h(r) (8.62)

α =

∫
h(r)dr + g(t) (8.63)

α = f(r) + g(t) (8.64)

Aside:
The metric is then

ds2 = −e2f(r)e2g(t)dt2 + e2β(r)dr2 + r2dΩ2 (8.65)
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We can do another coordinate transform

dt −→ e−g(t)dt (8.66)

then the metric becomes

ds2 = −e2f(r)dt2 + e2β(r)dr2 + r2dΩ2 (8.67)

We call this a static metric–independent of x0.
And the above procedure proved:
Any spherically symmetric vacuum metric can be transformed into a static met-
ric.
Therefore sometimes in literature, a spherically symmetric & vacuum metric is
often assumed to take the form

ds2 = −a(r)dt2 + b(r)dr2 + r2dΩ2 (8.68)

Continue our solution to Eq (8.54) to Eq (8.58)

e2(β−α) · (1) + (3) =
2

r
(∂1α+ ∂1β) = 0

∂1α+ ∂1β = 0 (8.69)

(4) = e−2β [r2∂1β − 1] + 1 = 0 (8.70)

(1− 2r∂1β)e−2β = 1

∂1(re−2β) = 1 (8.71)

Solution:

e−2β = 1 +
µ

r
µ is arbitrary constant (8.72)

α = −β(r) + h(t) (8.73)

The metric becomes

ds2 = −e−2β(r)e2h(t)dt2 + (1 +
µ

r
)−1 + r2dΩ2

= −e−2β(r)dt2 + (1 +
µ

r
)dr2 + r2dΩ2 (8.74)

ds2 = −
(

1− µ

r

)
dt2 +

(
1 +

µ

r

)−1

dr2 + r2dΩ2 (8.75)

This is the Schwarszchild solution of the vacuum Einstein equation for an spher-
ically symmetric spacetimes.
• Fix the constant µ

The Eq(8.75) is asymptotically flat, i.e., gµν
r→∞−−−→ ηµν Minkovski metric in

spherical coordinates with r being the radius from origin. Therefore we interpret
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Eq(8.75) as the exterior gravitational field of an isolated body. And we also call
the “γ” is sm as the “radius” and the “t” as the “time”.

µ can be fixed by comparing the Eq(8.75) with the metric of the weak field
of a body with mass M.
In previous section, such a metric was obtained on Page 25.{

γ̄00 = −4φ

γ̄ij = γ̄i0 = 0
(8.76)

where φ = −GM
r

is the gravitational potential.

γµν = γ̄µν −
1

2
ηµν γ̄ = γ̄µν −

1

2
ηµν(4φ) (8.77)

[γµν ] =


−4φ+ 2φ

−2φ
−2φ

−2φ

 γµν = −2φδµν (8.78)

then we have
gµν = ηµν + γµν (8.79)

In spherical coordinates

g00 = −(1 + 2φ) (8.80)

gγγ = (1− 2φ) (8.81)

Comparing with Eq(8.75), we get µ = −2GM .
Then finally we arrive at the celebrated Schwarzschild metric

ds2 = −(1− 2GM

r
)dt2 + (1− 2GM

r
)−1dr2 + r2dΩ (8.82)

Comments:
(a) Birkhoff’s theorem: S.M. is the unique spherically symmetric vacuum solu-
tion. By “unique”, all other solutions can be reached from the SM by coordinate
transformation.
(b) The source dose not need to be static. E.g. a collapsing star, a supernova
explosion. As long as the process is spherically symmetric.
(c) This last point (b) is like in e&m, where a radial redistribution of total
charge dose not affect the electric field outside. In particular, little radiation is
generated. Similarly, since the gravitational field is not much changed during
redistribution little gravitational wave will be generated.

8.1.5 Singularity in the SM

Singularity? What is it.
Mathematically, a (set of) points at which some given mathematical object

becomes not defined or not “well-behaved”. E.g., infinite or not-differentiable.
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Complex analysis:
1

xn
→ order n singularity;

f(z) =
sin(z)

z
z = 0 removable singularity (8.83)

1. Here,

ds2 = −(1− 2M

r
)dt2 + (1− 2M

r
)−1dr2 + r2dΩ2 (8.84)

Two superfacial singularities of the spacetime

γ = 0 (8.85)

γ = 2M (8.86)

Since the metric becomes poorly behaved. But is this a precise enough reason
to say they are singularities?
Answer: No. True physical singularities of spacetime should be defined from
the behavior of some physical process, not simply from the metric.

In particular, metric gµν ’s components depend on the coordinate system you
choose for the manifold.
E.g., in polar coordinates, the metric of R2

ds2 = dr2 + r2dθ2 (8.87)

At point r = 0, grr = 0; but we know that point is perfectly ok. So, we need to
study coordinate independent quantities to characterize singularities.
Here is our definition:

Definition 8.1.1. Points at which any scalar constructed from the metric be-
comes infinite.
• By “scalar”, (0, 0) type tensor.
• Singularities defined this way are sometimes called “curvature singularities”.
• Many times we also associate a physical condition to the definition: These
points have to be reachable by travelling a finite distance along a geodesic.
• Other definitions exist.

Scalars we usually consider

Rαβσρg
ασgβρ = R Ricci scalar (8.88)

RαβσρRµνληg
αµgβνgσλgρη = RµνληRµνλη (8.89)

RαβσρRµνληg
ασgνλgβνgρη = RµνRµν (8.90)

RµνρσR
ρσλτR µν

λτ (8.91)

... (8.92)

... (8.93)

even high orders in Rµνσρ. (8.94)
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Non-singularity?
• Check all scalars at these points.
• Geodesics behave well at these points.
2. Analysis of r = 0 and r = 2M

RαβγσR
αβγσ =

48G2M2

r6
(8.95)

Then r = 0 is a singularity point, since the above blows up. While the r = 2M
manifold is not singular from the point of view of RαβγσR

αβγσ. Indeed, you
can check other curvature scalars, at r = 2M , they are not singular.

Proof. Find a coordinate system near r = 2M , s.t. the metric is well-defined
and well-behaved.
Consider the coordinate transform

(t, r) −→ (v, r) (8.96)

where

v = t+ r + 2Mln| r
2M
− 1| (8.97)

The metric then will take the form

ds2 = −(1− 2M

r
)dv2 + 2dvdr + r2dΩ2 (8.98)

This metric behaves completely fine at r = 2M .

• There exist (many) other coordinate transforms that will make the metric
well behaved at r = 2M .

• Though the r = 2M surface is not singular, we will show later on that it
is an very very interesting surface, which has astonishing properties.

8.1.6 Interior solution

The manifold of r = 2M happens for an object with mass M at

rs ≡ 2M =
2GM

c2
≈ 2.95(

M

M�
)km Schwarzchild radius (8.99)

For our sun, rs = 2.95km� Rsun; earth, rs = 2.95× 3.0× 10−6km = 9mm�
Rearth.
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Therefore for most objects, the Schwarzschild radius is well inside the object,
where the S.M. solution is not valid anyway.

E.E with spherically symmetric fluid

We wish to :
1© Study the gravitational field inside an spherical object.
2© Compare with Newtonian limit.
3© See how to join with the exterior Schwarzschild vacuum solution.

• Suppose that the equation of state of the interior matter is p = p(ρ).
• The interior matter density ρ = ρ(r).
• Interior reached equilibrium & therefore static.
We use a metric

ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2dΩ2 (8.100)

E.E. becomes

(a) G00 =
1

r2
e2α d

dr
[r(1− e−2β)] (8.101)

(b) Grr = − 1

r2
e−2β(1− e−2β) +

2

r

dα

dr
(8.102)

(c) Gθθ = r2e−2β
[d2α

dr2
+ (

dα

dr
)2 +

1

r

dα

dr
− dα

dr
· dβ
dr
− dβ

dr
· 1

r

]
(8.103)

(d) Gφφ = sin2θGθθ (8.104)
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Assuming the interior is a perfect fluid, then

Tµν = (ρ+ p)vµvν + pgµν (8.105)

Here vµ is the for-velocity field of the fluid satisfying vµvµ = −1.
Since the star is static, vµ only has t component, so

v0v0g00 = −1 (8.106)

v0 = e−2α(r) (8.107)

v0 = −eα(r) (8.108)

vi = 0 (8.109)

These produce a Tµν :

(1) T00 = ρe2α (8.110)

(2) Trr = ρe2β (8.111)

(3) Tθθ = r2p (8.112)

(4) Tφφ = sin2θTθθ (8.113)

And they have to satisfy the conservation law

∇µTµν (8.114)

Computing the Chiristofel symbols, then the covariant derivitive, we get the
only non-vanishing component ν = γ,

(5) (ρ+ p)
dα

dr
= −dp

dr
(8.115)

Now, we have all components collected in our hands, we need to solve them.

(a) = (1) · 8π
(b) = (2) · 8π
(c) = (3) · 8π
(d) = (4) · 8π
(5)

we have 4 functions α(r), β(r), ρ(r), p(r).
We need to know α(r) and β(r). To do this, perhaps we need to know as an
input:

→ both ρ(r) and p(r); or
→ only one of ρ(r) and p(r) and the other can be fixed; or
→ perhaps both ρ(r) and p(r) have to have a fixed form to let α(r) and β(r)

have a solution.
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Which is the case, let us try to solve the system.
First let us trade-off β(r) by m(r)

m(r) ≡ 1

2
r(1− e−2β(r)) (8.116)

Then the (0, 0) component of the E.E becomes

dm(r)

dr
= 4πr2ρ(r) (8.117)

while (1, 1) component becomes

dα(r)

dr
=
m(r) + 4πr3p(r)

r(r − 3m(r))
(8.118)

using this in the conservation Eq(8.115), we get

dp

dr
= −(ρ+ p)

m+ 4πr3p

r(r − 2m)
(8.119)

The (2, 2) component equation, which is the longest, can be checked to be
automatically satisfied using Eq(8.117), Eq(8.118), Eq(8.119) and definition of
m(r).
So effectively, four functions m(r), α(r), p(r), ρ(r) and three equations. Only
when one of them is fixed, the other three can be solved.
Eq(8.117) has solution of m(r) in ρ(r)

m(r) =

∫ r

0

4πx2ρ(x)dx+ a (8.120)

This allow us to express the grr component

grr = e2β = 1− 2m(r)

r
= 1−

2
∫ r

0
4πx2ρ(x)dx+ 2a

r
(8.121)

grr(r → 0) −→ 1− 2a

r
(8.122)

We want a smooth metric at r = 0 and therefore a = 0. I.e.

m(r) =

∫ r

0

4πx2ρ(x)dx (8.123)

• Then assuming m(r) is known, the next simplest equation is Eq(8.119).
After solving p(r) from Eq(8.119) and putting into Eq(8.118), we can solve α(r).
• So, all of m(r), p(r) and α(r) can be fixed up to some integral constants by
knowing ρ(r).
• Unfortunately, we can not solve Eq(8.119) generally without knowing some
particular form of ρ(r).

Therefore we study some simple ρ(r) next.
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Before doing that, some comments: (1) The formula of m(r) is the same as
the mass formula in Newtonian gravity. However, it is not exact the mass in
G.R., because in G.R., the proper volume element is

√
|g|dx3 = e−2β(r)r2 sin θdrdθdφ.

Mass is

M(x) =

∫ r

0

4πx2ρ(x)
[
1− 2m(x)

x

]− 1
2

dx (8.124)

M(x) > m(r) since 2m(x) ≤ x

The difference ∆M ≡M(x)−m(x) is the gravitational binding energy.
(2) In Newtonian limit, ρ � p, m(r) ∼ ρ(r)R3 � pr3, m(r) � r, then Eq
(8.118) becomes

dα(r)

dr
≈ m(r)

r
(8.125)

which is the Poisson’s equation for Newtonian gravity potential.
(3) Eq (8.119) is called Tolman-Oppenheimer-Volkoff equation. It states a re-
lation between p and ρ that a equilibrium and static fluid should satisfy in a
spherical gravity field.
In Newtonian limit, it becomes

dp

dr
= −ρm(r)

r2
(8.126)

which is Newtonian hydrostatic equilibrium equation.

Pressure, density & stability of stars

(1) Now we have to specify a form of ρ(r).
We consider an incompressible fluid of density ρ.

ρ(r) =

{
ρ0 r ≤ R
0 r > R

Then immediately from Eq (8.117)

m(r) =

∫ r

0

4πx2ρ(x)dx =

{
4
3πr

3ρ0 r ≤ R
4
3πR

3ρ0 ≡M r > R
(8.127)

(2) Then from Eq (8.119), now ρ(r) is solvable

p(r) =

ρ0

[ (1− 2M
R )

1
2 − (1− 2M

R ·
r2

R2 )
1
2

(1− 2M
R ·

r2

R2 )
1
2 − 3(1− 2M

R )
1
2

]
r ≤ R

0 r > R

(8.128)

There was an integral constant that we used to set the boundary condition
p(R) = 0.
We would like p(r) to be bounded at all r ≥ 0:

|p(r)| <∞ for r ≥ 0 (8.129)
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The extreme of p(r) occur at points

(1− 2M

R
· r

2

R2
)

1
2 − 3(1− 2M

R
)

1
2 = 0 (8.130)

or at r = 0, r =∞ (8.131)

or at
dp(r)

dr
= 0 (8.132)

We can solve these potentially extreme points.
Eq (8.130)⇒

r2 = R2(q − 4R

M
) (8.133)

Eq (8.132)⇒

r = 0 (8.134)

boundaries r = 0 r =∞ (gone) (8.135)

1© When q − 4R
M < 0, Eq (8.133) has no real solution.

Extreme happens at the center of the star

p(r = 0) = ρ0

[ 1− (1− 2M
R )

1
2

3(1− 2M
R )

1
2 − 1

]
(8.136)

q − 4R

M
< 0⇒ 3(1− 2M

R
)

1
2 − 1 > 0 (8.137)

Therefore, p(r) is bounded. 2© When q − 4R
M ≥ 0, Eq (8.133) has real positive

solution

r = R(q − 4R

M
)

1
2

≤ R since r ≥ 2m(r),

R ≥ 2M for r = constant surface to be static and spacelike

I.e., p(r = R(q − 4R
M )

1
2 ) will blow up. Summarizing 1© and 2©, we get 1© has to

be the case for a stable star.
That is

M <
4R

M
(8.138)

or,

M <
4

9
· 1

(3πρ)
1
2

since
4

3
πR3ρ = M (8.139)

Physical statement: A object with low density but large mass can not be stable.
E.g., A gas planent can not be too heavy if it’s stable.
Comments:
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1© Is this statement due to G.R.? What about Newtonian case?
In Newtonian limit, Poisson’s equation(Eq (8.126)) lets us solve

p(r) =

{
2
3πρ

2
0(R2 − r2) r ≤ R

0 r > R

This is everywhere finite.
Therefore no stability statement can be said about the star.
2© What if ρ 6= constant? Results: 1) For dρ

dr ≤ 0, and the star has a fixed
radius R, one can always prove the maximum stable mass is

Mmax =
4

9
R (8.140)

2) For dρ
dr ≤ 0, |p(r)| ≤ ρ0 and dp(ρ)

dρ at small ρ, there always exist an upper
limit of mass for stable star.
• Along this line, many interesting and grand conclusions can be drawn about
stars.
Consult some modern astronomy books.
3) Eq (8.118) for ρ = constant case can be solved analytically. The result is
quite long so we will not write it out.
But beyond r = R, we can verify that the solution becomes

ds2 = −(1− 2M

r
dt2 + (1− 2M

r
)−1dr2 + r2dΩ2 r ≥ R (8.141)

I.e., the two part of the metric join smoothly.

8.2 Geodesics in the Schwarzschild Spacetime

The interest here is to study how the geodesics behave in the vacuum part of
the Schwarzschild in spacetime.

ds2 = −(1− 2M

r
)dt2 + (1− 2M

r
)−1dr2 + r2dΩ2 (8.142)

The reason to study geodesics is apparent: all matter, including satellite/moons
around planets, planets around stars or space travellers, follow their geodesics.
We would like to know what happens to them.
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8.2.1 The general geodesic equation and its simplification

Geodesic equation,
d2xµ

dλ2
+ Γµρσ

dxρ

dλ

dxσ

dλ
= 0 (8.143)

where λ is a affine parameter.
For timelike geodesics, λ is chosen as propertime.
For spacelike geodesics, it can be chosen as proper space.
For null geodesics, it is some affine parameter.

Also, we have the normalization condition

dxµ

dλ

dxν

dλ
gµν = −κ (8.144)

here, κ =


1 timelike

0 null

−1 spacelike

The Christoffel symbols (non-zero):

Γ0
01 =

M

r(r − 2M)
(8.145)

Γ1
00 =

M

r3
(r − 2M) (8.146)

Γ1
11 = − M

r(r − 2M)
(8.147)

Γ1
22 = −(r − 2M) sin2 θ (8.148)

Γ2
12 =

1

r
(8.149)

Γ2
33 = − sin θ cos θ (8.150)

Γ3
13 =

1

r
(8.151)

Γ3
23 =

cos θ

sin θ
(8.152)

• 4-components of the geodesic equation:

d2t

dλ2
+

2M

r(r − 2M)

dr

dλ

dt

dλ
= 0 (8.153)

d2r

dλ2
+
M

r3
(r − 2M)

( dt
dλ

)2

− M

r(r − 2M)

( dr
dλ

)2

− (r − 2M)
[( dθ
dλ

)2

+ sin2 θ
(dφ
dλ

)2]
= 0 (8.154)

d2θ

dλ2
+

2

r

dθ

dλ

dr

dλ
− sin θ cos θ

(dφ
dλ

)2

= 0 (8.155)

d2φ

dλ2
+

2

r

dφ

dλ

dr

dλ
+ 2

cos θ

sin θ

dθ

dλ

dφ

dλ
= 0 (8.156)
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Normalization condition

−
(

1− 2M

r

)( dt
dλ

)2

+
(

1− 2M

r

)−1( dr
dλ

)2

+ r2
(dφ
dλ

)2

+ r2 sin2 θ
( dθ
dλ

)2

= −κ
(8.157)

where κ =


+1 timelike

0 null

−1 spacelike
Simplification:
Now this is a system of ode’s.
• Solution will depend on initial position and 1-st derivative. Notice θ → π−θ is
a symmetry of the system (and the metric), then if initial position and tangent

vector lies in the plane θ =
π

2
, then the test particle will remain in this plane,

because it should not deviate from this plane to any direction.

On the other hand, any initial position and tangent vector can be brought to
this plane through rotation of coordinate system. Therefore, whitout losing any
generality, we can set

θ(θ) =
π

2
for all λ (8.158)

And this apparent solves Eq (8.155).
• Then using this in Eq(8.156) · r2, we realize its a total derivative

d
(
r2 dφ

dλ

)
dλ

= 0 (8.159)

i.e.,

r2 dφ

dλ
= L (8.160)

• The Eq (8.153) can also be tackled, treating r(λ) and
dr

dλ
, as known functions,
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multiplying by
(

1− 2M

r
)
)

. we see

Eq(8.153)⇒ d

dλ

[(
1− 2M

r

) dt
dλ

]
= 0 (8.161)(

1− 2M

r

) dt
dλ

= E (8.162)

So, once r(λ) is known, using Eq (8.160), Eq (8.162), we can get t(λ) and ϕ(λ).

• The Eq (8.157), after multiplying
(

1 − 2M

r

)
, and using Eq (8.160) & Eq

(8.162), becomes,

−E2 +
( dr
dλ

)2

+
(

1− 2M

r

)(L2

r2
+ κ
)

= 0 (8.163)

This can also be written as

1

2

( dr
dλ

)2

+ V (r) =
1

2
E2 (8.164)

where,

V (r) =
1

2

(
1− 2M

r

)
κ+

L2

2r2

(
1− 2M

r

)
=

1

2

(
1− 2M

r

)(
κ+

L2

r2

)
(8.165)

• Finally the longest equation Eq (8.154), after substituting
dϕ

dr
,
dt

dr
, becomes

d

dλ

[(dλ
dλ

)/(
1− 2M

r

)
+
L2

r2
− E2

1− 2M
r

]
= 0 (8.166)

From this we get
1

2

( dr
dλ

)2

+ V ′(r) =
1

2
E2 (8.167)

where V ′(r) =
1

2

(
1− 2M

r

)(L2

r2
+ c
)

for any constant c.

Then comparing with Eq (8.164), we see that c = κ in order to have solutions.
Summary:
⇒We finally have 3 equations, Eq (8.162), Eq (8.160) and Eq (8.164) with r(λ),
ϕ(λ) and t(λ) undetermined.
⇒ Once r(λ) is determined, the rest can be fixed easily.

⇒ The Eq (8.164) equation is the same as a unit mass particle of energy
E2

2
moving in 1-dimensional effective potential V (r).
⇒ The integral constants L and E corresponds to the test particle’s angular
momentum and energy per unit mass respectively. They are conserved because
they are constants of the motion.
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⇒ In Newtonian gravity, the equation of motion would be the same except the

potential VNewton =
1

2

(
1− 2M

r

)
κ+

1

2

L2

r2
.

I.e., without the −ML2

r3
term.
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Chapter 9

Analysis of the motions

We compare the motion of massive and massless test particles in G.R. and
Newtonian gravity, hoping to find some detectable effects that can confirm the
validity of G.R.
First let us point out some general conclusions that are not specific to G.R. or
Newtonian gravity, but to any central force potential

1

2

( dr
dλ

)2

+ V (r) = constant (9.1)

(a) If V (r) allows a stable circular motion for a test particle (
dr

dλ
= 0), their

V (r) should have local minima. I.e.,
dV (r)

dr
= 0 has solutions, and

d2V (r)

dr2
> 0

at that r.
In our case,

dV

dr
=
κMr2 − L2r + 3ML2δ

r4
= 0 (9.2)

where κ =

{
1 massive

0 massless
and δ =

{
1 G.R.

0 Newtonian
.

The solution then is

rc =

3Mδ κ = 0, δ = 1

L2 ±
√
L4 − 12M2L2δ

2M
κ = 1

They are potential locations of stable circular motion.
(b) If the potential has a local minimum, then there can exist bound orbits.
The bound orbits which are not circular will oscillate around radius of stable
circular motion.
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9.1 Newtonian potential, massive particle

• κ = 0, δ = 0.
There is not a solution for rc, no circular motion, no bound orbits.
• Straight line in R3 since in Newtonian gravity, gravitational force is zero be-
cause of zero mass.
• Smaller L means closer initial shooting direction.

• Imagine a massless particle hitting a potential vocano like this.
? Slowing down as approaching, then bounce back, all along straight lines.
? If you have higher energy, you can psss straightly.
? If you have closer aiming direction, you have an lower version of the potential,
i.e., a lower mountain, and you can come closer to r = 0.

9.2 Newtonian potential, massive particle

• κ = 1, δ = 0, there exist a local minimum.

Stable circular orbit at rc =
L2

M
.

Bound orbit around this radius.
• If your energy E > V (r = ∞), you have unbound orbit. (From classical
mechanics, bound orbits: ellipse; unbound orbits: para-bola or hyper-bola.)
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G.R. geodesic motions
The difference in potentials is the ∼ 1

r3 term, therefore it will be manifest when
r is small.

9.3 G.R. massless particle

• κ = 0, δ = 1.
rc = 3M is an maximum.
No stable bound orbit: either fly in or out.

9.4 G.R. massive particle

• κ = 1, δ = 1.

rc =
L2 ±

√
L4 − 12L2M2

2M
(9.3)
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• If L2 < 12M2, rc is not real V (r) has no minimum or maximum. (It do has
a V (r) = 0 point at r = 2M .) From the Eq (8.164), indeed one can show that

for particles with
dr(initial)

dλ
≤ 0 and L2 < 12M2, the particle will fall directly

the r = 2M surface and enter it.

• If L2 > 12M2, then rc− ≡
L2 −

√
L4 − 12L2M2

2M
is a maximum while rc+ ≡

L2 +
√
L4 − 12L2M2

2M
is a local minimum. So stable circular motion is possible

at rc+.

Bound orbit exist if
1

2
E2 < V (∞) =

1

2
.

Unbound orbit exist if V (∞) < 1
2E

2 < V (r−).
• Because L2 > 12M2, rc+ > 6M , 3M < rc− < 6M , where both 6M are
obtained when L2 = 12M2 and the 3M for rc− is when L2 →∞.

Noting in Newtonian case, rc =
L2

M
= rc+ (L2 → ∞), therefore the L → ∞

limit in G.R. corresponds to the Newtonian limit.



Chapter 10

Observational effects of
G.R.

10.1 Precession of perihelia

• The radial geodesic was

1

2

( dr
dλ

)2

+ V (r) =
1

2
E2 (10.1)

We showed that when L2 > 12M2, there exist a rc+ for massive particle. If
1

2
E2 = V (rc+), then the test particle will do circular motion.

• When 1
2E

2 is slightly larger than V (rc+), the r(λ) will oscillate around rc+.
Using,

r = rc+ + δ sin(ωλ+ c) (10.2)

1

2
E2 = V (rc+ + δ) (10.3)
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We solve the frequency of oscillation to be

ω2
r =

d2V

dr2

∣∣∣
r=rc+

=
M(rc+ − 6M)

r3
c+(rc+ − 3M)

(10.4)

where we used rc+ to substitute L2.
• The above was all about radial geodesics.
We had two simple equation Eq (8.162) and Eq (8.160) that we need to solve
too.
From Eq (8.160), when r ≈ rc+,

ω2
φ =

(dφ
dλ

)2

=
( L
r2

)2

=
( L

r2
c+

)2

= O(δ) (10.5)

ω2
φ =

M

r2
c+(rc+ − 3M)

(10.6)

(a) In the limit of Newtonian gravity

L→∞

then,
rc+ �M

Apparently, ω2
r ≈ ω2

φ. Both r and φ return to their initial values simultaneously.

Orbit is closed. (Indeed in N.G.,
ωr
ωφ

=
n

m
, for n, m integers.)

(b) In G.R., ωr 6= ωϕ cause a precession of angle at which a minimum r is
achieved.
These minimum r points are called “perihelia”.
The precession due to G.R. is

ωp ≡ ωφ − ωr

=
M

r2
c+(rc+ − 3M)

− M(rc+ − 6M)

r3
c+(rc+ − 3M)

(10.7)

=
3M

3
2

r
5
2
c+

(10.8)

It was proven that for elliptical orbit with semimajor axis a and eccentricity e,
the precession to lowest order is

ωp ≈
3M

3
2

(1− e2)a
5
2

(10.9)

F This result was applied to the precession of Mecury around the Sun. Ein-
stein at 1916 showed that the G.R. explained it well. And this success was an
important factor for the early acceptance of G.R. by people.
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10.2 Bending of light ray

In last section, we used the Eq (8.160) for timelike geodesics to solve the fre-
quency of angular motion. We now look at the Eq (8.160) for null geodesics.
• The Eq (8.164) allows us to solve

ṙ =
[
E2 − L2

r2

(
1− 2M

r

)] 1
2

(10.10)

while Eq (8.160) can be written as

φ̇ =
L

r2
(10.11)

combining
dφ

dr
=
L

r2

[
E2 − L2

r2

(
1− 2M

r

)] 1
2

(10.12)

We would like to consider

∆φ ≡ φ(λ = +∞)− φ(λ = −∞) (10.13)

Graphically:
At λ = ±∞, the trajectories are almost straight lines. Because at r → ∞, the
metric is Newtonian-like.
• For the distance r(λ), there is a turning point where r stops decreasing and

starts increasing. That is when
dr

dλ
= 0.

From Eq (8.164), that is when

V (r) =
1

2
E2 (10.14)

L2

2r2
− ML2

r3
=

1

2
E2 (10.15)

r3 −
(L
E

)2

(r − 2M) = 0 (10.16)

The solution, denoted by r0, is

r0 =
2b√

3
cos
[1

3
cos−1

(
− 3

3
2M

b

)]
(10.17)
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b ≡ L

E
is called “apparent impact parameter”.

• Then the angle of the tangent vector accumulated from r = ∞ to r = r0 is
given using Eq (10.12)

∆φ1 =

∫ r0

∞

L

r2

[
E2 − L2

r3
(r − 2M)

]− 1
2

dr

=

∫ r0

∞

dr

[r4b−2 − r(r − 2M)]
1
2

(10.18)

While the whole bending angle, by symmetry (or by defining φ = angle from
baseline, and then π − φ on the other half), is two time ∆φ1.

After changing of variable u =
1

r
,

∆φ = |2∆φ1| = 2

∫ 1
r0

0

du

(b−2 − u2 + 2Mu3)
1
2

(10.19)

This expends on two parameters b and M ; note r0 = r0(b,M).
• This is an integral quantity, the Newtonian limit is in M = 0.

∆φ(M → 0) = 2

∫ 1
b

0

du

(b−2 − u2)
= π r0(M → 0) = b (10.20)

Completely in agreement that null geodesics go straight in Newtonian gravity.
• In G.R., we would like to see the bending of light passing points with some
known distance from the center, not light with particular apparent impact fac-
tor.
Then we replace b2 in Eq (10.19) by b2 =

r3
0

r0−2M from Eq (10.17)

∆φ =2

∫ 1
r0

0

du

(r−2
0 − 2Mr−3

0 − u2 + 2Mu3)
1
2

(10.21)ysmall M limit

=∆φ(M = 0) +
∂(∆φ)

∂M

∣∣∣
M=0

·M +O(M2)

=π +
4

b
(10.22)

• 1919 Eddington, Arthur measured this bending and find good agreement with
G.R. First major prediction confirmed for G.R.
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10.3 Gravitational Redshift

We have been working with the radial and angular geodesics equations. Now
we also use the t-component of the geodesics to derive another effect of G.R.
• Consider a light ray was emitted at time t′(λ = λi) from point (rA, θA, ϕA)
and was received at time t′(λ = λf ) by someone at point (rB , θB , ϕB).

So its null geodesics is described by

[xµ] = [t′(λ), r′(λ), θ′(λ), ϕ′(λ)] (10.23)
r′(λi) = rA, r′(λf ) = rB

θ′(λi) = θA, θ′(λf ) = θB

ϕ′(λi) = ϕA, ϕ′(λf ) = ϕB

(10.24)

Consider another light ray, emitted at some later coordinate time

t′ = t(λ) + ∆t (∆t is λ independent constant) (10.25)

with same initial r, θ, ϕ and four velocity.
Then from Eq (8.153), Eq (8.154), Eq (8.155), Eq (8.156), and Eq (8.157), it is
not hard to see they are also satisfied by

[x′µ] = [t′(λ) + ∆t, r′(λ), θ′(λ), ϕ′(λ)] (10.26)

I.e., the above is the geodesic solution of light ray. Then at coordinate time
t′(λf )+∆t, the second ray will reach (r(λf ), θ(λf ), ϕ(λf )) which is (rB , θB , ϕB).
That is, the light ray emitted ∆t coordinate time after, from the same source,
will be receive ∆t coordinate time later by the receiver at the same position.
• The source fixed at (rA, θA, ϕA) and receiver fixed at (rB , θB , ϕB) usually are
massive materials. Therefore their world lines are timelike.
Their tangent vectors should satisfy the normalization condition

gµν
dxµ

dλ

dxν

dλ
= −1 (10.27)
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Denoting the source’s propertime as λA, and that of the receiver as λB . Their
4-components as [xµA] = (tA, rA, θA, ϕA) and [xµB ] = (tB , rB , θB , ϕB). Then

−
(

1− 2M

rA

)( dtA
dλA

)2

= −1 (rA, θA, ϕA) are fixed. (10.28)

−
(

1− 2M

rB

)( dtB
dλB

)2

= −1 (rB , θB , ϕB) are fixed. (10.29)

I.e., the propertime and coordinate time has relation for A:

dλA =
(

1− 2M

rA

) 1
2

dtA (10.30)

for B:

dλB =
(

1− 2M

rB

) 1
2

dtB (10.31)

Integrating both sides, noting rA, rB does not depend on tA, tB

∆λA =
(

1− 2M

rA

) 1
2

∆tA (10.32)

∆λB =
(

1− 2M

rB

) 1
2

∆tB (10.33)

Now if two light ray was emitted by a time difference ∆tA and received by a
coordinate time difference ∆tB , we showed ∆tA = ∆tB . Then,

∆λA
∆λB

=

(
1− 2M

rA

1− 2M
rB

) 1
2

(10.34)

In terms of frequency, the emitting and receiving frequency would be

ωA
ωB

=
∆λB
∆λA

=

(
1− 2M

rB

1− 2M
rA

) 1
2

(10.35)

For rB > rA > 2M (the usual case: rA is the surface of a star, rB is the earth-
star distance), ωB < ωA, or λB > λA due to constancy of light speed.
⇒ A resshift.
• First conclusive verification: 1959 the Pownd-Rebka experiment.

10.4 Time delay of light ray

Now we try to use the Eq (8.162) equation of null geodesic to show another
measurable effect of G.R.– Time delay of light signal.
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• The Eq (8.162) equation again(
1− 2M

r
)
dt

dλ
= E (10.36)

and the Eq (8.164)
dr

dλ
=
[
E2 −

(
1− 2M

r

)L2

r2

] 1
2

(10.37)

Then, we get

dt

dr
=

dt
dλ
dr
dλ

=
(

1− 2M

r

)[
1−

(
1− 2M

r

) b2
r2

]− 1
2

(10.38)

where b =
L

E
. Then the coordinate time taken for the light from a source at rs

to its bending point at r0 is

∆t
∣∣∣rs
r0

=

∫ rs

r0

(
1− 2M

r

)−1[
1−

(
1− 2M

r

) b2
r2

]− 1
2

dr (10.39)

• The result depends on b, which is not easy to measure, therefore we, as before,

us b = r0

(
1 − 2M

r

)− 1
2

to replace it. We also work on the first order in M , the

result is

∆t
∣∣∣rs
r0

=
√
r2
s − r2

0 + 2M ln
(rs +

√
r2
s − r2

0

r0

)
+M

(rs − r0

rs + r0

) 1
2

(10.40)

The time from sending until receiving by an receiver at rr, is then

∆t =∆t
∣∣∣rs
r0

+ ∆t
∣∣∣rr
r0

(10.41)

=
√
r2
s − r2

0 +
√
r2
r − r2

0 + 2M
[

ln
(rs +

√
r2
s − r2

0

r0

)
+ ln

(rr +
√
r2
r − r2

0

r0

)]
+ 2M

[(rs − r0

rs + r0

) 1
2

+
(rr − r0

rr − r0

) 1
2
]
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• The propertime at the receiver radius rr is related to the propertime by

∆λ =
(

1− 2M

rr

) 1
2

∆t (10.42)

↓ First order of M

=∆t− M

r
(
√
r2
s − r2

0 +
√
r2
r − r2

0)

⇒ The
√
r2
s − r2

0 +
√
r2
r − r2

0 is the Newtonian limit result.
⇒ The rest terms are G.R. corrections.
⇒ This effect is first-noticed by Irwin.I.Shapiro. First confirmed in 1966.



Chapter 11

Cosmology

11.1 Homogeneity and Isotropy

Definition 11.1.1. A spacetime is said to be homogenous if there exists a one-
parameter family of spacelike hyper surfaces Σt foliating the spacetime; and for
each t and any points p, q ∈ Σt, there exists an distance-preserving map which
takes p into q.

About the observational support of the homogeneity of universe, there are
some data but not very conclusive.

Definition 11.1.1. A spacetime is said to be isotropic around a point p, if for
two unit spatial tangent vectors in the tangent space of p: v1 ∈ Tp, v2 ∈ Tp,
there exist an distance-preserving map that can take v1 to v2.

Observational support of isotropy around earth:
Cosmic microwave background first observed 1964-1965. Current CMB temper-
ature T = 2.72548± 0.00057 Kelvin.
• The homogeneity and isotropy implies that the spacetime of the universe can
be foliated into R× Σt. Its metric takes the form

ds2 = −dt2 + a2(t)γij(u)duiduj (11.1)

(1) The “−dt2” term might contain an coefficient function of t; but we can al-
ways scale t to make it 1.
(2) The a(t) is called scale factor; γij is the metric on Σt, i, j = 1, 2, 3.
(3) The coordinates that make the metric free of dtdui term and spacelike part
duiduj only depend on a single function of a(t), is called “comoving coordi-
nates”.
(4) An observer has constant ui is called a “comoving observer”.
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11.2 Robertson-Walker metric

• Now let us see what else requirement the homogeneity and isotropy can put
on the metric.
Look at (3)R kl

ij (Riemann tensor calculated from the metric γij of the 3-dimensional
surface) at any point p.
For a tensor in the tensor space of rank (0, 2), Tkl, we have at point p,

((3)R kl
ij Tkl = T ′ij (11.2)

is another element in the (0, 2) rank tensor space. So ((3)Rij)
kl can be thought

as an linear map from

rank (0, 2) tensor space −→ rank (0, 2) tensor space

In linear algebra, you learned

AabTa = T ′b (11.3)

Aab is a linear transform. It is eigendecomposible

A = Q

 λ1

. . .

λn

Q−1 (11.4)

If the eigenvalues of A are different, then there exists set of vectors, whose norm
will not be scaled uniformly.

Therefore if we want the scaling of norms all vectors to be the same, then the
eigenvalues of A has to be the same.
So for ((3)Rij)

kl, due to isotropy we want the scaling of norms of all tensors at
p to be the same, therefore the eigenvalues of ((3)Rij)

kl should be equal.
I.e.,

((3)Rij)
kl =Qkδki δ

l
jQ
−1 +Qk′δkj δ

l
iQ
−1y((3)Rij)

kl = −((3)Rji)
kl

=Qkδk[iδ
l
j]Q
−1ytransfromation of coordinates

((3)Rij)
kl =kδk[iδ

l
j]
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• Lowering the indices by γij , we get

(3)Rijkl = k(γikγjl − γilγjk) (11.5)

The Ricci tensor becomes
(3)Rjl = 2kγjl (11.6)

The metric on the hypersurface should also be spherically symmetric (isotropy+homogeneity).
Then we can propose the following form (similar to the derivation of Schwarzschild
metric)

dσ2
Σ = γijdu

iduj = e2β(r)dr2 + r2(dθ2 + sin2 θ)dϕ2 (11.7)

I.e., [γij ] =

 e2β(r)

r2

r2 sin2 θ

.

The Ricci tensor of this metric is

(3)R11 =
2

r
∂1β (11.8)

(3)R22 = e−2β(r∂1β − 1) + 1 (11.9)

(3)R33 = (3)R22 sin2 θ (11.10)

Matching with Eq (11.6), we get

β(r) = −1

2
ln(1− kr2), e2β =

1

1− kr2
(11.11)

Then

ds2 = −dt2 + a2(t)
[ dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

]
(11.12)

Another change of coordinates

r →
√
|k|r

a→ a√
|k|

k → k

|k|

leaves Eq (11.12) invariant. Therefore what matters are the signs of k.
• The Robertson-Walker metric

ds2 = −dt2 + a2(t)
[ dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

]
(11.13)

k = −1: constant negative curvature on Σ. The metric/spacetime/universe is
called “open”.
k = 0: no curvature on Σ. The metric/spacetime/universe is called “flat”.
k = 1: constant positive curvature on Σ. The metric/spacetime/universe is
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called “closed”.
1. For k = 0, the metric on Σ can be computed to

dσ2
Σ = dx2 + dy2 + dz2 (11.14)

after usual spherical coordinates to Euclidean coordinates transform. Therefore,
locally the metric describes an flat R3.

2. For k = 1, we can transform r = sinχ, then

dσ2
Σ = dχ2 + sin2 χdΩ2 (11.15)

Globally, the metric describes a 3-sphere. This is not a 2-sphere you can draw,
which is embedded in R3. It does not have boundary but its size is finite.
3. For k = −1, transform r = sinhψ brings metric to

dσ2
Σ = dψ2 + sinh2 ψdΩ2 (11.16)

Space with constant negative curvature.
2-D section e.g.

Therefore sometimes, the RW metric is also written as

ds2 = −dt2 + a(t)


dχ2 + sin2 χdΩ2

dx2 + dy2 + dz2

dψ2 + sinh2 ψdΩ2

(11.17)

• Based only on homogeneity and isotropy, we fixed the metric from 10 unknown
functions of all spacetime coordinates, to 3 discrete cases with 1 function a(t)
of a single coordinates. (Power of symmetry)

11.3 Classical cosmological models

11.4 Friedmann equations

The E.E
Gµν = 8πTµν (11.18)
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work out Gµν .
From the RW metric Eq (11.13), the Ricci tensors

R00 = −3
ä

a
(11.19)

R11 =
aä+ 2ȧ2 + 2k

1− kr2
(11.20)

R22 = r2(aä+ 2ȧ2 + 2k) (11.21)

R33 = R22 sin2 θ (11.22)

where ȧ =
da

dt
, ä =

d2a

dt2
.

Ricci scalar

R =
6

a2
(aä+ ȧ2 + k) (11.23)

Gµν = Rµν −
1

2
gµνR (11.24)

• For the energy-momentum tensor, we assume that the universe is filled with
perfect fluid:

Tµν = (p+ ρ)UµUν + pgµν (11.25)

where Uµ is the four-velocity of the fluid.
In a comoving frame, the fluid will be at rest

Uµ = (1, 0, 0, 0)

And so

[Tµν ] =


ρ 0 0 0
0
0 gijp
1

 (11.26)

T = Tµµ = −ρ+ 3p (11.27)

• The E.E produce (0, 0) component

−3
ä

a
= 4π(ρ+ 3p) (11.28)

(1, 1), (2, 2), (3, 3) components give only 1 equation

ä

a
+ 2
( ȧ
a

)2

+ 2
k

a2
= 4π(ρ− p) (11.29)

Use Eq (11.28) in Eq (11.29), we finally get two simplified equation

ä

a
= −4π

3
(ρ+ 3p) (11.30)( ȧ

a

)2

=
8π

3
ρ− k

a2
(11.31)
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(1) They are called “Friedmann equations”. RW metrics that obey these equa-
tions describes an “FRW” universe.
(2) We also define a parameter

H ≡ ȧ

a
(11.32)

Hubble parameter: measure how fast the universe expands at a particular time.
Current measured value H > 0⇒ universe expanding.

11.5 Different fluids

We finally have 3 Friedmann equations Eq (11.30) and Eq (11.31), and three
unknowns a(t), ρ(t) and p(t). We therefore need a equation of state p = p(ρ).
Essentially, the perfect fluid relavant for cosmology obey the simple EOS.

p = ωρ (11.33)

where ω is a constant.
Then we can start to solve them.

d(ȧ2)

dt
= d
(8π

3
ρa2)/dt (11.34)

2ȧä =
8π

3
(ρ̇a2 + 2ρaȧ) (11.35)

Using Eq (11.30), Eq (11.33)

ρ̇

ρ
= −3(1 + ω)

ȧ

a
(11.36)

solving this we obtain
ρ = ρ0a

−3(1+ω) (11.37)

ρ0 is the density when a(t) = 1.
To further solve a(t) and p, we need to specify particular value for ω.

11.5.1 Dust universe

Collisionless, nonrelativistic matter. Therefore no pressure

p = 0 ω = 0 (11.38)

• Immediately, ρ = ρ0a
−3.

This is easy to understand: the space volume increase as a3 while the total
number of the dust is conserved, then the number density decrease like a−3, and
the energy density ρ ∼ n ·meach · c

2 ∼ a−3.
• The Eq (11.31) now becomes

ȧ2 − 8π

3
ρ0

1

a
+ k = 0,

8π

3
ρ0 ≡ c (11.39)
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This equation looks quite simple but the result can only be expressed in the
form of a parameter equation.

k = +1: a =
1

2
c(1− cos η), where η is related to t by: t− 1

2
c(η − sin η).

k = 0: a =
(9c

4

) 1
3

t
2
3 .

k = −1: a =
1

2
c(cosh η − 1), t =

1

2
c(sinh η − η).

Eq (11.30) is automatically satisfied.

(A) Since ȧ(now) > 0, we are expanding. Left side of the figure.
(B) Depending on k, the universe might

expand forever: k1, k = 0,
shrink eventually: k = 1.

(C) In anycase, in the past a→ 0.
• The a→ 0+ state dose not mean the size of the universe is zero.
• Rather, the distance between matter is approaching zero.
⇒ Everything is compressed together but the universe is still expected to be

infinite.

11.5.2 Radiation solution

For radiation p =
1

3
ρ, ω =

1

3
.

• Then immediately from Eq (11.37)

ρ = ρ0a
−4 (11.40)

This is not hard to understand either:
The number density goes ρ ∼ a−3, and then the wave length goes like λ ∼ a,
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ω ∼ a−1, then the energy density become

ρ ∼ a−4 (11.41)

• The Eq (11.31) becomes after the same procedure as in the case of dust

ȧ− 8π

3
ρ0

1

a2
+ k = 0, c ≡ 8π

3
ρ0 (11.42)

The solution is then given by

k = +1 a =
√
c
[
1−

(
1− t√

c

)2] 1
2

(11.43)

k = 0 a = (4c)
1
4 t

1
2 (11.44)

k = −1 a =
√
c
[(

1 +
t√
c

)2

− 1
] 1

2

(11.45)

Eq (11.30) is automatically satisfied.

(A) Previous statements still hold.
(B) Most importantly, there was also a point of time that a(t)→ 0+.

11.5.3 Vacuum energy included

It is also possible that there is an vacuum energy with

Tvac
µν = − Λ

8π
gµν (11.46)
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or,

ρ = −p =
Λ

8π
(11.47)

ω = −1 in EOS. ρ = ω = rho.
The E.E for Tµν including such an vacuum energy should also be modified to

Gµν = 8πTµν − Λgµν (11.48)

here Tµν = Tµν(other) + Tvac
µν .

However, we will not further assume other forms of energy-momentum tensor
or persuit fuither solutions. –Beyond the scope of this course.

11.6 Big bang

The perfect fluids studied in 2 are crude simplified versions. Reality differs.

• Observationally H =
ȧ

a
≈ 40− 90km/sec/Mpc > 0 (Mpc = 3× 1024cm)

•Without assuming a particular form of EOS, as long as ρ > 0, p ≥ 0, from Eq
(11.30), we see that

ä = −4π

3
(ρ+ 3p)a < 0 (11.49)

• Then ȧ(t = past) > ȧ(t = now) = 40 ∼ 90km/sec/Mpc · a(now) > 0.
I.e., the universe as accelerating faster.
If it was expanding at a constant value ȧnow then some time T = anow

ȧnow
ago,

a(t) would be zero.
• This means the universe started from a density infinite and Ricci curvature

R =
6

a2
(aä+ ȧ2 + k) infinite singularity. This singularity is called Big Bang.

(1) Consequently, the age of universe Auniverse <
a
ȧ ≈ 30Billion years.

(2) What is before the big bang?
There are theories on this, but very difficult to check.
(3) What is the state/process right after the big bang is intensively studied
research area.
(4) CMB is a remnant of big bang. LHC can be used to study some states after
big bang , QGP.
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11.7 Fate of the universe

The future evolution of the universe is determined by the Friedmann equations.
From Eq (11.31) ( ȧ

a

)2

=
8π

3
ρ− k

a2
(11.50)

using H =
ȧ

a
,

k

a2H2
=

8πρ

3H2
− 1 (11.51)

Defining critical density ρcrit =
3H2

8π
, and Ω =

ρ

ρcrit
, this becomes

k

a2H2
= Ω− 1 (11.52)

Therefore,

ρ < ρcrit ⇔ Ω < 1⇔ k = −1 “open′′

ρ = ρcrit ⇔ Ω = 1⇔ k = 0 “flat′′

ρ > ρcrit ⇔ Ω > 1⇔ k = +1 “closed′′

• Note that Eq (11.52) should hold for all time t, including tnow. I.e., if we
measure H, and then ρ, we can know our future.
• Observationally, we find ρ ≈ ρcrit with very small error. Therefore the uni-
verse is flat.
• Among the entire energy density,
70%:Dark energy
25%:Dark matter

5%: Known matter



4% interstellar Hydrogen and Helium

1%


0.5% stars

0.3% neutrinos

0.03% heavy elements, including most planet and human beings

...

11.8 Effects of G.R. in cosmology

11.8.1 Cosmological redshift

Consider how an comoving observer measure quantities of free falling objects,
that is, quantities of geodesic motion.
• For an comoving observer,its four-velocity is

V µ = (1, 0, 0, 0)
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Then we can form an tensor

Kµν ≡ a2(gµν + VµVν) (11.53)

As one can verify, this satisfies

∇(σKµν) = 0 (11.54)

where Kµν is a Killing tensor.
• Now suppose a particle moves along its geodesic. Its for-velocity is

V µ ≡ dxµ

dλ
(11.55)

Then we can define

k2 ≡ kµνV µV ν = a2[VµV
ν + (VµV

µ)2] (11.56)

• Then I claim that k2 is a constant of motion along the geodesics.

d(kµνV
µV ν)

dλ
=
dxα

dλ
∇α(KµνV

µ)

= V αV µV ν∇αkµν + kµνV
α(V µ∇αV ν + V α∇αV µ)

= 0 + 0

where Eq (11.54) and geodesic equation V α∇αV µ = 0 are used.
• Therefore for a timelike geodesic VµV

µ = −1,{
k2 = a2[−1 + (V 0)2]

(V 0)2 − gijV iV j = 1

we solve ~V ≡
√
gijV iV j = k

a .
That is the particle will slow down w.r.t comoving observers/coordinates as a
expands.
This is indeed a true, physically measurable slow down by comoving observers
like us.
• For null geodesics VµV

µ = 0, we have −VµV µ = k
a . Recall that −VµV µ is the

energy of the light ray observed by the comoving observer, and E = ~ω for light
rays, we have

ω = −VµV µ =
k

a
(11.57)

At two different instents t1 and t2, then

ω1

ω2
=
a2

a1
(11.58)

The wavelength then follows
λ1

λ2
=
a1

a2
(11.59)
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There will be a redshift as the universe expands, as observed by comoving
observers. Usually, we measure the amount of resshift by

z ≡ λ1 − λ2

λ2

=
λ1

λ2
− 1 (11.60)

where λ1 is in the future of λ.
• z is a very useful quantity in observational cosmology. E.g., we can observe
the hydrogen absorbtion line wavelength redshift. Say from n = 2 → n = 3,
λ2 = 656.3nm, λ1 > λ2.
We can identify how much the universe has expanded from a particular event,
such as supernova.

11.8.2 Cosmological horizon/particle horizon

• Since the universe has a finite age, and the light speed is the maximum speed
that particles can travel and is also finite, there exist a boundary in space be-
yond which the light did not have enough time to travel to us (or any comoving
observer), even if it started right after the big bang. This boundary is called
cosmological horizon or particle horizon.

• Let us define a quantity to characterize the size of this horizon. We define a
“proper-distance” to be the distance measured on a slice of constant time. At
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time t, the proper distance ds between two points with coordinate distance dr
(same θ and ϕ), is defined through

ds2 = 0 + a2(t)
dr2

1− kr2
+ 0 + 0

ds =
a(t)√

1− kr2
dr

The horizon proper distance at time t is then

dc.h. ≡
∫
ds = a(t)

∫ r=r(horizon)

r=0

1√
1− kr2

dr (11.61)

Now for the integral part, we know that light travels along null geodesics

ds2 = 0 = −dt2 +
a2(t)

1− kr2
dr2 + 0 + 0 (11.62)

dt

a(t)
=

1√
1− kr2

dr (11.63)

This produces

dc.h.(t) = a(t)

∫ t′=t

t′=0

dt′

a(t′)
(11.64)

• Therefore for different models of cosmology, dust, radiation etc, we can always
compute a dc.h.
In particular, for any model we studied, we can check that

lim
t′→0

a(t′)→ t′α, 0 < α < 1 (11.65)

Therefore dc.h is finite.
• Observationally, dc.h.(now) ≈ 13.7 giga persec ≈ 45 Billion light years.
• There exist other kinds of horizons in some cosmological models. E.g., cos-
mological event horizon. Don’t mix.
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Chapter 12

Black Holes (B.H)

12.1 Schwarzschild B.H

12.2 Causal structure at r > 2M

The S.M. is given by

ds2 = −
(

1− 2M

r
)dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2 (12.1)

•We have shown that the r = 2M surface is not singular: curvatures are finite,
and we also found explicit coordinate transforms.
• However, the r = 2M still turns out to be an very interesting surface.
Consider a radial null geodesic, satisfying

ds2 = 0 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2 (12.2)

That is,

dt

dr
= ±

(
1− 2M

r

)−1

(12.3)

or,

dr

dt
= ±

(
1− 2M

r

)
(12.4)

The “−” sign one is called in-going, while “+” is called out-going. Eq (12.4)
gives the boundary of light cone.
At large r, |drdt | ≈ 1.

93
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Since timelike particles travels slower, that is |drdt | < |
dr
dt |null|, the cone close like

With smaller r, the cone closes up, until r = 2M+, where the cone completely
closes up.

• It might seem that it will take infinite long t for the light ray to reach 2M , and
the light ray might never cross r = 2M . But indeed, infinite t does not mean
infinite proper time for the traveler. t (or ∆t) is only a good measurement of
the proper time r =∞ where metric is Minkovski.
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• Infinite t to reach r = 2M only means in the point of view of an asymptotic
observer at r =∞, the light ray/particle will never reach r = 2M in finite time.
• If the traveler sends back a light signal at its own fixed frequency, from our
studying of the red-shift, we know that the frequency at larger r is indeed smaller

ωr−large =
(1− 2M/rsmall

1− 2M/rlarge

) 1
2

ωr−small (12.5)
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I.e., when ωr−small and rlarge are fixed, ωr−large approaches infinity as r ap-
proaches 2M .
• Indeed, for the proper time of the traveler (or affine parameter of the light
ray), it only take finite amount of time to reach and then cross the r = 2M
surface. Too see this, we need to find a better coordinate system to describe
the spacetime around r = 2M .

12.3 Coordinate transforms and causal structure
around r . 2M

We first notice that the Eq (12.4)

dt

dr
= ±

(
1− 2M

r

)−1

(12.6)

is solvable to get

t = ±r∗ + constant (12.7)

r∗(r) =

∫
1

1− 2M/r
dr = r + 2M ln | r

2M
− 1| (12.8)

I.e., the out-coming light ray move along curve t− r∗ = constant, the in-going
light ray move along curve t+ r∗ = constant
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• This motivate us to try new coordinates defined by

u = t+ r∗ (12.9)

v = t−R∗ (12.10)

where r∗ is a function of r.
It is easy to work out relation from (dt, dr)→ (du, dv).
The Eq (8.75) becomes

ds2 = −
(

1− 2M

r

)
dudv + r2dΩ2 (12.11){

du = dt+ 1
1−2M/rdr

dv = dt− 1
1−2M/rdr

where r should be thought as a function of u, v, obtainable by inversing r∗(r) =
1

2
(u− v), using Eq (12.8)

The null geodesics are u = constant or v = constant.
This metric is manifestly non-singular at r = 2M . However, the r = 2M surface,
from Eq (12.8), Eq (12.9) and Eq () is at u− v = −∞.
• We can try to make a half transform too:

(t, r)→ (u, r)

where u is given by Eq (12.9).
The metric Eq (8.75) simply becomes

ds2 = −
(

1− 2M

r

)
du2 + (dudr + drdu) + r2dΩ2 (12.12)

There is no singularity at r = 2M , which is also finite of the coordinate. This co-
ordinate system is called Eddington-Finkelstein coordinates. The null geodesics
along radial direction can be solved

ds2 = 0

⇒du

dr
=

0 “ingoing”

2
(

1− 2M

r

)−1

“outcoming”
(12.13)
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(1) Now its clear that when r < 2M , all future-directed null geodesics, du > 0,
will have dr < 0, a decreasing r.
(2) No problem for both null and timelike geodesics to pass the r = 2M surface.
Therefore the r = 2M surface is locally perfectly regular, globally function as a
surface of no return.

Once a particle pass the r = 2M surface, it can never come out.
The r = 2M is given the name “event horizon” – any event happens inside that
horizon can never be observed by an outsider in any long time.
The region bounded by r = 2M is then called a “Black hole”.

• Indeed from the definition of proper time.

dτ2 = −gµνdxµdxν =
(

1− 2M

r

)
−
(

1− 2M

r

)−1

dr2 − r2dΩ2 (12.14)

the maximum amount of proper time it takes for a timelike geodesic to travel
from r = 2M to r = 0 is when dt2 = 0 = dΩ2.

∆τmax =

∫
dτ =

∫ 0

2M

− 1√
2M
r − 1

dr = πM (12.15)

This is the proper time that you will take when you energy is 0+ right at the
surface r = 2M after you enter the horizon.
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12.4 Kuskal coordinates

• We can try to scale the u− v = −∞ surface (r = 2M surface) to somewhere
finite. To do this, study the behavior of the metric near r = 2M .
From Eq (12.8),

r∗ ' 2M ln |r/2M − 1| (12.16)

⇒r/2M ' 1± er
∗/2M = 1± e(u−v)/4M (12.17)

⇒1− 2M

r
' ±e(u−v)/4M (12.18)

where “+” sign corresponds to r > 2M ; “−” sign corresponds to r < 2M .
Then the metric Eq (12.11) around r = 2M becomes

ds2 = ∓(eu/4Mdu)(e−u/4Mdv) + r2dΩ2

{
“−” r ≈ 2M+

“+” r ≈ 2M−

This motivates us to introduce another transform

V = ∓e−v/4M , U = eu/4M

{
“−” r > 2M+

“+” r < 2M−

Then,

dV = − 1

4M
V dv, dU =

1

4M
Udu (12.19)

UV = ∓e(u−v)/4M = ∓er
∗/2M = −e r

2M (
r

2M
− 1) (12.20)

The metric Eq (12.11) for all r becomes

ds2 = −
(

1− 2M

r

)(4M

U

)(
− 4M

V

)
dUdV + r2dΩ

= −32M3

r
e−

r
2M dUdV + r2dΩ

The coordinates U and V are called null Kruskal coordinates.
• Kruskal diagram: A diagram obtained by drawing constant r and t lines on a
U , V grid. We tilt the grid s.t. null geodesics are 45◦
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(1) From Eq (12.20), constant r curves are constant UV curves.
(2) r = 2M are U = 0, V = 0 axis.
(3) Now there are two copies for each r = constant. Therefore the Kruskal
coordinates reveals a large portion of manifold than covered by the original
Schwarzschild coordinates.
(4) The original Schwarzschild coordinate cones region I and II. It is seen the
hiting to r = 0 after r < 2M is unavoidable.
• One can also do a rotation

Ṽ = (U + V )/2 (12.21)

Ũ = (U − V )/2 (12.22)

The metric is then

ds2 =
32M2

r
e−r/2M (dŨ2 − dṼ 2) + r2dΩ2 (12.23)

The Ũ , Ṽ are called Kruskal-Szekeres coordinates. r = r(Ũ , Ṽ ).
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In this system, the relation (t, r) and (Ũ , Ṽ ) are worked out:

Ũ

Ṽ

}
=
( r

2M
− 1
) 1

2

e
r

4M


cosh(

t

4M
)

sinh(
t

4M
)

r > 2M

Ũ

Ṽ

}
=
(

1− r

2M

) 1
2

e
r

4M


cosh(

t

4M
)

sinh(
t

4M
)

r < 2M

12.5 Reissner-Nordstrom BH

12.5.1 The metric

• Consider a spherecically symmetric metric

ds2 = −e2ψ(t,r)fdt2 + f−1dr2 + r2dΩ (12.24)

where f = f(t, r), ψ = ψ(t, r). This is the most general form of a spherically
symmetric spacetime.
Consider a electro-magnetic field in this spacetime. Its field strength Fαβ has
no θ or ϕ direction components. This ensures it’s purely electric when measured
by stationary observers.

[Fαβ ] =


0 × 0 0
× 0 0 0
0 0 0 0
0 0 0 0

 (12.25)

The Maxwell equation in vacuum

∇βFαβ = 0 = |g| 12 ∂β(|g| 12Fαβ) (12.26)

That is,
∂r(e

ψr2F tr) = 0, ∂t(e
ψr2F rt) = 0 (12.27)

solution then

F tr = e−ψ
Q

r2
, Q being an integral constant (12.28)

The energy momentum tensor

Tαβ ≡
1

4π
(FαµFβµ −

1

4
δαβF

µνFµν) (12.29)

becomes

[Tαβ ] =
Q

4πr4


−1

−1
1

1

 (12.30)
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• The E.E from Eq (8.1) becomes

∂m(r, t)

∂r
= 4πr2(−T tt ) (12.31)

∂m(r, t)

∂t
= −4πr2(−T rt ) (12.32)

∂ψ(r, t)

∂r
= 4πrf−1(−T tt + T rt ) (12.33)

where f(r, t) = 1− 2m(r, t)

r
.

Substituting Tαβ {
∂m
∂r = Q2

2r2

∂m
∂r = 0

we get m(r) = M − Q2

2r , M being the integration constant.
• The metric becomes

ds2 = −
(

1− 2M

r
+
Q2

r2

)
dt2 +

(
1− 2M

r
+
Q2

r2

)−1

dr2 + r2dΩ2 (12.34)

One can show that Q is the total electric charge in the spacetime (we will not
do this though).

12.5.2 B.H.

The metric components have coordinate singularities at

1− 2M

r
+
Q2

r2
= 0 (12.35)

or {
r± = M ±

√
M2 −Q2 |M | ≥ |Q|

r = 0 |M | < |Q|

• There are two surfaces, r = r+ and r = r−, r+ > r−, when |M | > |Q|. When
|M | = |Q|, r+ ⇔ r−.
We can show that the r+ is an event horizon and therefore metric Eq (12.34)
contains a B.H, called Reissner-Nordstrom BH. When Q = M , this BH is called
an extreme R.N B.H.
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• The r = r− surface is not an event horizon, but an apparent horizon. (Which
we have not teach the proper background to understand this.)
• The r = 0 point is a time-like singularity.
That is, travelers do not have to hit this point. They are free to avoid encounter
it if they choose so.

12.6 Kerr B.H. and Kerr-Newnan B.H.

For completeness, we also give the last two of the four most well known BHs.

12.6.1 Kerr B.H.

The first is called a Kerr B.H. (discovered by Roy Kerr in 1963).
Its metric is

ds2 = −
(

1− 2Mr

ρ2

)
dt2 − 4Mar sin2 θ

ρ2
dtdφ+ Σρ2 sin2 θdφ2 +

ρ2

∆
dr2 + ρ2dθ2

(12.36)
where

ρ2 = r2 + a2 cos2 θ (12.37)

∆ = r2 − 2Mr + a2 (12.38)

Σ = (r2 + a2)2 − a2∆ sin2 θ (12.39)

This metric describes an stationary and mixing symmetric spacetime. M is the
total mass and L = aM is the angular momentum. So a us the ratio of angular
momentum and mass. The metric describe the spacetime of an rotating body.
• One can show that it also has an event horizon when M ≥ a. This is obtained
from grr component, when ∆ = 0, we get

r = r± = M ±
√
M2 − a2 (12.40)

Therefore, Eq (12.36) also describes a block hole when M ≥ a.
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12.6.2 Kerr-Newman B.H.

The Kerr-Newman metric

ds2 = −
(dr2

∆
+dθ2)ρ2+(dt−a sin2 θdφ)2 ∆

ρ2
−((r2+a2)dφ−adt)2 sin2 θ

ρ2
(12.41)

where

a =
J

M
(12.42)

ρ2 = r2 + a2 cos2 θ (12.43)

∆ = r2 − 2Mr + a2 + θ2 (12.44)

Here M is the total mass, J is angular momentum while Q is charge. When
M2 > a2 +Q2, the ∆ = 0 gives coordinate singularities

r = r± = M ±
√
M2 − (a2 +O2) (12.45)

One can show that r = r+ is an event horizon. Therefore the Eq (12.41) also
can describe a B.H. called Kerr-Newman B.H.


