Homepage Research Publications Teaching Join us


Publications


  1.    Zonghai Li, Junji Jia,
        Deflection of charged signals in a dipole magnetic field in Kerr background,
        arXiv:2312.00318 (2023).
        [Arxiv link]
  2.    Tingyuan Jiang, Xiaoge Xu, Junji Jia,
        Deflection and Gravitational Lensing in Kerr spacetime off equatorial plane,
        arXiv:2307.15174 (2023).
        [Arxiv link]
  3.     Jinhong He, Shaofei Xu, Junji Jia,
        Periapsis precession in general stationary and axisymmetric spacetimes,
        arXiv:2309.04241 (2023).
        [Arxiv link]
  4.     Yujie Duan, Siyan Lin, Junji Jia,
        Deflection and gravitational lensing with finite distance effect in the strong deflection limit in stationary and axisymmetric spacetimes,
        J. Cosmol. Astropart. Phys. 07.036 (2023).
        [Publisher link] [Arxiv link]
  5.     K. Korshynska, Y.M. Bidasyuk, E.V. Gorbar, Junji Jia, A.I. Yakimenko,
        Dynamical galactic effects induced by stable vortex structure in bosonic dark matter,
        Eur. Phys. J. C 83, 451 (2023).
        [Publisher link] [Arxiv link]
  6.     Y.O. Nikolaieva, Y.M. Bidasyuk, K. Korshynska, E.V. Gorbar, Junji Jia and A.I. Yakimenko,
        Stable vortex structures in colliding self-gravitating Bose-Einstein condensates,
        Phys. Rev. D 108, 023503 (2023).
        [Publisher link] [Arxiv link]
  7.     Jinhong He, Qianchuan Wang, Qiyue Hu, Li Feng, Junji Jia,
        Deflection in higher dimensional spacetime and asymptotically non-flat spacetimes,
        Class. Quant. Grav. 40, 065006 (2023).
        [Publisher link] [Arxiv link]
  8.     Zonghai Li, Wei Wang, Junji Jia,
        Deflection of charged signals in a dipole magnetic field in Schwarzschild background using Gauss-Bonnet theorem,
        Phys. Rev. D 106, 124025 (2022).
        [Publisher link] [Arxiv link]
  9.     Zhuoming Zhang, Gaofeng Fan, Junji Jia,
        Effect of Particle Spin on Trajectory Deflection and Gravitational Lensing,
        J. Cosmol. Astropart. Phys. 09, 061 (2022).
        [Publisher link] [Arxiv link]
  10.     Haotian Liu, Jinning Liang, Junji Jia,
        Deflection and Gravitational lensing of null and timelike signals in the Kiselev black hole spacetime in the weak field limit,
        Class. Quant. Grav. 39, 195013 (2022).
        [Publisher link] [Arxiv link]
  11.     Shangjie Zhou, Muchun Chen, Junji Jia,
        Effect of electric interaction on the deflection and gravitational lensing in the strong field limit,
        Eur. Phys. J. C 83, 883 (2023).
        [Publisher link] [Arxiv link]
  12.     Zonghai Li, Yujie Duan, Junji Jia,
        The deflection of charged massive particles by a 4-Dimensional charged Einstein-Gauss-Bonnet black hole,
        Class. Quant. Grav. 39, 015002 (2022).
        [Publisher link][Arxiv link]
  13.     Zixiao Li, Haotian Liu, Junji Jia,
        Deflection and gravitational lensing of null and timelike signals in general asymptotically (anti-)de Sitter spacetimes,
        Phys. Rev. D 104, 084027 (2021).
        [Publisher link][Arxiv link]
  14.     Haotian Liu, Junji Jia,
        Time delay in the strong field limit for null and timelike signals and its simple interpretation,
        Eur. Phys. J. C 81, 894 (2021).
        [Publisher link][Arxiv link]
  15.     Zonghai Li, Junji Jia,
        Kerr-Newman-Jacobi geometry and the deflection of charged massive particles,
        Phys. Rev. D 104, 044061 (2021).
        [Publisher link][Arxiv link]
  16.     Xiaoge Xu, Tingyuan Jiang, Junji Jia,
        Deflection angle with electromagnetic interaction and Gravitational-electromagnetic dual lensing,
        J. Cosmol. Astropart. Phys. 08, 022 (2021).
        [Publisher link][Arxiv link]
  17.     Haotian Liu, Junji Jia,
        Universal time delay in static spherically symmetric spacetimes for null and timelike signals,
        Chin. Phys. C 45, 083102 (2021).
        [Publisher link][Arxiv link]
  18.     Junji Jia, Ke Huang,
        Perturbative deflection angle, gravitational lensing in the strong field limit and the black hole shadow,
        Eur. Phys. J. C 81, 242 (2021).
        [Publisher link][Arxiv link]
  19.     Haotian Liu, Junji Jia,
        Constraining the spacetime spin using time delay in stationary axisymmetric spacetimes,
        Eur. Phys. J. C 80, 932 (2020).
        [Publisher link][Arxiv link]
  20.     Ke Huang, Junji Jia,
        Perturbative deflection angle for signal with finite distance and general velocities,
        J. Cosmol. Astropart. Phys. 08, 016 (2020).
        [Publisher link][Arxiv link]
  21.     Junji Jia,
        The perturbative approach for the weak deflection angle,
        Eur. Phys. J. C 80, 242 (2020).
        [Publisher link][Arxiv link]
  22.     Yujie Duan, Weiyu Hu, Ke Huang, Junji Jia,
        Perturbative deflection angles of timelike rays,
        Class. Quant. Grav. 37, 145004 (2020).
        [Publisher link][Arxiv link]
  23.     Zonghai Li and Junji Jia,
        The finite-distance gravitational deflection of massive particles in stationary spacetime: a Jacobi metric approach,
        Eur. Phys. J. C 80, 157 (2020).
        [Publisher link][Arxiv link]
  24.    
  25.     Nan Yang, Chunxia Su, Yuemei Zhang, Junji Jia, Robert L Leheny, Katsuyoshi Nishinari, Yapeng Fang, Glyn O Phillips,
        In situ nanomechanical properties of natural oil bodies studied using atomic force microscopy,
        J. Colloid and Interface Sci., 570, 362-374 (2020).
        [Publisher link][Arxiv link]
  26.     Yaoguang Wang, Xionghui Liu, Nan Yang, Jiawei Liu and Junji Jia,
        Escape, bound and capture geodesics in local static coordinates in Schwarzschild spacetime,
        Gen. Relativ. Gravit. 52 (2) 16 (2020).
        [Publisher link][Arxiv link]
  27.    
  28.     Y Yang, X Cao, Y Li, Z Wang, B Li, X Jiang, J Jia, C Pan,
        Spontaneous Symmetry-Breaking in the Corrosion Transformation of Ancient Bronzes,
        Minerals 2020, 10(8), 656 (2020).
        [Publisher link]
  29.     Nan Yang, Junji Jia, Xionghui Liu and Hongbao Zhang
        Constraining Chaplygin models using diffuse supernova neutrino background,
        Physics of the Dark Universe 26, 100397 (2019).
        [Publisher link][Arxiv link]
  30.     Junji Jia and Haotian Liu,
        Time delay of timelike particles in gravitational lensing of Schwarzschild spacetime ,
        Phys. Rev. D 100 124050 (2019).
        [Publisher link][Arxiv link]
  31.     Junji Jia, Yaoguang Wang and Shun Zhou,
        On the Possibility to Determine Neutrino Mass Hierarchy via Supernova Neutrinos with Short-Time Characteristics ,
        Chin. Phys. C 43 095102 (2019).
        [Publisher link][Arxiv link]
  32.     Xiankai Pang and Junji Jia,
        Gravitational lensing of massive particles in Reissner-Nordström black hole spacetime,
        Class. Quant. Grav. 36 065012 (2019).
        [Publisher link][Arxiv link]
  33.     Jiawei Liu, Jiafeng Chang, Guoqiang Zhong, Jizong Zhang, Xiankai Pang, and Junji Jia,
        Fabrication and performance of single crystal diamond neutron and gamma ray detectors ,
        AIP Advances 9, 095103 (2019).
        [Publisher link]
  34.     Jiawei Liu, Jiafeng Chang, Guoqiang Zhong, Jizong Zhang, Xiankai Pang, and Junji Jia,
        Design, fabrication and testing of CVD diamond detectors with high performance,
        AIP Advances 9, 045205 (2019).
        [Publisher link]
  35.    
  36.     Yanpeng Yang, Chengzhi Luo, Junji Jia, Yafei Sun, Qiang Fu, Chunxu Pan,
        A wrinkled Ag/CNTs-PDMS composite film for a high-performance flexible sensor and its applications in human-body single monitoring,
        Nanomaterials 9, 850 (2019).
        [Publisher link]
  37.     Zhongyou Mo and Junji Jia,
        Generalized Schlömilch formulas and thermal Casimir effect of a fermionic rectangular box,
        Phys. Rev. A 98 012512 (2018).
        [Publisher link ][Arxiv link]
  38.     Junji Jia, Xiankai Pang and Nan Yang,
        Existence and stability of circular orbits in static and axisymmetric spacetimes,
        Gen. Relativ. Gravit. 50, 41 (2018).
        [Publisher link][Arxiv link]
  39.     Junji Jia, Jiawei Liu, Xionghui Liu, Zhongyou Mo, Xiankai Pang, Yaoguang Wang and Nan Yang,
        Existence and stability of circular orbits in general static and spherically symmetric spacetimes,
        Gen. Relativ. Gravit. 50, 2, 17 (2018).
        [Publisher link][Arxiv link]
  40.    
  41.     Chengzhi Luo, Junji Jia, Youning Gong, Zhongchi Wang, Qiang Fu and Chunxu Pan,
        Highly Sensitive, Durable, and Multifunctional Sensor Inspired by a Spider,
        ACS Appl. Mater. Interfaces 9, 23, 19955-19962 (2017).
  42.     [Publisher link]
       
  43.     Junji Jia, P. K. Pyatkovskiy, E. V. Gorbar, and V. P. Gusynin,
        Broken symmetry states in bilayer graphene in electric and in-plane magnetic fields,
        Phys.Rev. B 95, 4, 045410 (2017).
        [Publisher link][Arxiv link]
  44.    
  45.     Chengzhi Luo, Da Wan, Junji Jia, Delong Li, Chunxu Pan and Lei Liao,
        A rational design for the separation of metallic and semiconducting single-walled carbon nanotubes using a magnetic field,
        Nanoscale 8, 26, 13017-13024 6 (2016).
        [Publisher link]
  46.     Xionghui Liu, Junji Jia and Nan Yang,
        Gravitational lensing of massive particles in Schwarzschild gravity,
        Class. Quant. Grav. 33, 17, 175014 (2016).
        [Publisher link][Arxiv link]
  47.    
  48.     Junji Jia, E. V. Gorbar and V. P. Gusynin,
        Gap generation in ABC-stacked multilayer graphene: Screening versus band flattening,
        Phys. Rev. B 88, 205428 (2013).
        [Publisher link][Arxiv link]
  49.    
  50.     Junji Jia, Shinya Matsuzaki and Koichi Yamawaki,
        Walking techni-pions at LHC,
        Phys. Rev. D 87, 016006 (2013).
        [Publisher link][Arxiv link]
  51.    
  52.     E.V. Gorbar, V.P. Gusynin, Junji Jia and V.A. Miransky,
        Broken-symmetry states and phase diagram of the lowest Landau level in bilayer graphene
        Phys. Rev. B 84, 235449 (2011).
        [Publisher link][Arxiv link]
  53.    
  54.     F.A. Chishtie, T. Hanif, Junji Jia, R.B. Mann, D.G.C. McKeon, T.N. Sherry and T.G. Steele,
        Can the renormalization group improved effective potential be used to estimate the Higgs mass in the conformal limit of the standard model?
        Phys. Rev. D 83, 105009 (2011).
        [Publisher link][Arxiv link]
  55.    
  56.     F. A. Chishtie, T. Hanif, Junji Jia and D. G. C. McKeon,
        Summing radiative corrections to the effective potential,
        Int. J. Mod. Phys. A. 25, 5711-5729 (2010)
        [Publisher link][Arxiv link]
  57.    
  58.     A. Buchel, F. A. Chishtie, T. Hanif, S. Homayouni, Junji Jia and D. G. C. McKeon,
        Radiative corrections in vector-tensor models,
        Int. J. Mod. Phys. A. 25, 163 (2010).
        [Publisher link][Arxiv link]
  59.    
  60.     Junji Jia,
        New spherically symmetric solutions in Einstein-Yang-Mills-Higgs model,
        Canadian J. Phys. 88, 189 (2010).
        [Publisher link][Arxiv link]
  61.    
  62.     Junji Jia and Hongbao Zhang,
        Can the Copernican principle be tested using the cosmic neutrino background?,
        J. Cosmol. Astropart. Phys. 0812, 002 (2008).
        [Publisher link][Arxiv link]
  63.    
  64.     F. A. Chishtie, Junji Jia and D. G. C. McKeon,
        The derivative expansion of the effective action and the renormalization group equation,
        Phys. Rev. D 76, 105006 (2007).
        [Publisher link][Arxiv link]
  65.    
  66.     A. Buchel, Junji Jia and V. A. Miransky,
        Dynamical stabilization of runaway potentials and landscape of vacua at finite density,
        Nucl. Phys. B 772, 323 (2007).
        [Publisher link][Arxiv link]
  67.    
  68.     A. Buchel, Junji Jia and V. A. Miransky,
        Dynamical stabilization of runaway potentials at finite density,
        Phys. Lett. B 647, 305 (2007).
        [Publisher link][Arxiv link]
  69.    
  70.     M. Hashimoto and Junji Jia,
        Meissner screening masses in gluonic phase,
        Phys. Rev. D 76, 114019 (2007).
        [Publisher link]
  71.    
  72.     Nan Yang, Haibin Yang, Junji Jia and Xiaofen Pang,
        Formation and magnetic properties of nanosized PbFe12O19 particles synthesized by citrate precursor technique,
        J. Alloys & Compounds 438, 263 (2007).
        [Publisher link]
  73.    
  74.     E. V. Gorbar, Junji Jia and V. A. Miransky,
        Vortices in gauge models at finite density with vector condensates,
        Phys. Rev. D 73, 045001 (2006).
        [Publisher link][Arxiv link]
  75.    
  76.     Cher Ming Tan, Junji Jia and Weibo Yu,
        Temperature dependence of the field emission of multiwalled carbon nanotubes,
        Appl. Phys. Lett. 86, 263104 (2005).
        [Publisher link]
  77.    
    合作组论文

  78.     JUNO Collaboration,
        The Design and Technology Development of the JUNO Central Detector,
        arXiv: 2311.17314.
        [Arxiv link]

  79.     JUNO Collaboration,
        Real-time Monitoring for the Next Core-Collapse Supernova in JUNO,
        arXiv: 2309.07109.
        [Arxiv link]

  80.     JUNO Collaboration,
        JUNO sensitivity to the annihilation of MeV dark matter in the galactic halo,
        JCAP 09, 001 (2023).
        [Publisher link] [Arxiv link]

  81.     JUNO Collaboration,
        The JUNO experiment Top Tracker,
        Nucl.Instrum.Meth.A 1057, 168680(2023).
        [Publisher link] [Arxiv link]

  82.     JUNO Collaboration,
        JUNO sensitivity to $^{7}$Be, pep, and CNO solar neutrinos,
        JCAP 10, 022 (2023).
        [Publisher link] [Arxiv link]

  83.     JUNO Collaboration,
        JUNO Sensitivity on Proton Decay p\bar{\nu}K^+ Searches,
        Chin.Phys.C 47, 11, 113002 (2023).
       [Publisher link] [Arxiv link]

  84.     JUNO Collaboration,
        Model Independent Approach of the JUNO 8B Solar Neutrino Program,
        arXiv: 2210.08437.
        [Arxiv link]

  85.     JUNO Collaboration,
        Prospects for Detecting the Diffuse Supernova Neutrino Background with JUNO,
        J. Cosmol. Astropart. Phys. 10, 033 (2022).
        [Publisher link] [Arxiv link]
  86.    
  87.     JUNO Collaboration,
        Mass Testing and Characterization of 20-inch PMTs for JUNO,
        Eur.Phys.J.C 82, 1168 (2022).
        [Publisher link] [Arxiv link]
  88.    
  89.     JUNO Collaboration,
        Sub-percent Precision Measurement of Neutrino Oscillation Parameters with JUNO,
        Chin.Phys.C 46, 123001 (2022).
        [Publisher link] [Arxiv link]
  90.    
  91.     JUNO Collaboration,
        Damping signatures at JUNO, a medium-baseline reactor neutrino oscillation experiment,
        J. High Energ. Phys. 2022, 62 (2022).
        [Publisher link][Arxiv link]

  92.     JUNO Collaboration,
        Radioactivity control strategy for the JUNO detector,
        J. High Energ. Phys. 2021, 102 (2021).
        [Publisher link][Arxiv link]
  93.    
  94.     JUNO Collaboration,
        JUNO Physics and Detector,
        Progress in Particle and Nuclear Physics 123, 103927 (2021).
        [Publisher link][Arxiv link]
  95.    
  96.     JUNO Collaboration,
        The Design and Sensitivity of JUNO's scintillator radiopurity pre-detector OSIRIS,
        Eur. Phys. J. C 81, 973 (2021).
        [Publisher link][Arxiv link]
  97.    
  98.     JUNO Collaboration,
        JUNO sensiticity to low energy atmospheric neutrino spectra,
        Eur. Phys. J. C 81, 887 (2021).
        [Publisher link][Arxiv link]
  99.    
  100.     JUNO Collaboration,
        JUNO Physics Prospects,
        PoS ICRC2021 1194 (2021).
        [Publisher link]
  101.    
  102.     JUNO Collaboration,
        Calibration Strategy of the JUNO Experiment,
        JHEP 03, 004 (2021).
        [Publisher link][Arxiv link]
  103.    
  104.     JUNO Collaboration,
        Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector,
        Nucl. Instrum. Meth. A 988, 164823 (2021).
        [Publisher link] [Arxiv link]
  105.     JUNO Collaboration,
        Feasibility and physics potential of detecting $^8$B solar neutrinos at JUNO,
        Chin. Phys. C 45, 023004 (2021).
        [Publisher link] [Arxiv link]
  106.     JUNO Collaboration,
        TAO Conceptual Design Report: A Precision Measurement of the Reactor Antineutrino Spectrum with Sub-percent Energy Resolution,
        arXiv:2005.08745.
        [Arxiv link]
  107.    
  108.     CEPC Study Group,
        CEPC Conceptual Design Report: Volume 2 - Physics & Detector,
        arXiv:1811.10545.
        [Arxiv link]
  109.    
  110.     CEPC Study Group,
        CEPC-SPPC Preliminary Conceptual Design Report. 1. Physics and Detector,
        IHEP-CEPC-DR-2015-01, IHEP-AC-2015-01.
        [Arxiv link]
  111.    
    会议论文

  112.     Junji Jia and Shinya Matsuzaki,
        One-family walking techni-pions,
        Strong Coupling Gauge Theories in the LHC Perspective (SCGT12), World Scientific, 2014, pp. 415-418.
        [Publisher link]
  113.    
  114.     E.V. Gorbar, V.P. Gusynin, Junji Jia and V.A. Miransky,
        Phase diagram of the lowest Landau level in bilayer graphene,
        Progress of Theoretical Physics Supplement 197, 107 (2012).
        [Publisher link]
  115.    
  116.     Cher Ming Tan, Junji Jia, Ang L.K., Kuan Tat Ng and Yong Chern Foo,
        Effect of high voltage annealing on the field emission of multiwalled carbon nanotube film,
        5th IEEE Conf. on Nanotechnology, 2, 638 (2005).
        [Publisher link]

  117. 书籍

  118.     姚端正,周国全,贾俊基
       《数学物理方法》(第四版),
        科学出版社 (2020).
        ISBN 9787030656513
  119.    



武汉大学主页     物理学院主页     物理学科服务平台     Arxiv     Inspires